本文显示屏蔽的自动化器(MAE)是可扩展的自我监督学习者,用于计算机愿景。我们的MAE方法很简单:我们掩盖输入图像的随机补丁并重建缺失像素。它基于两个核心设计。首先,我们开发一个不对称的编码器解码器架构,其中编码器仅在掩码的可见子集(没有掩码令牌)上,以及重量解码器,该重量解码器从潜像和掩码令牌重建原始图像。其次,我们发现掩蔽了高比例的输入图像,例如,75%,产生非凡和有意义的自我监督任务。耦合这两种设计使我们能够有效且有效地培训大型模型:我们加速培训(3倍或更多)并提高准确性。我们可扩展的方法允许学习概括的高容量模型:例如,Vanilla Vit-Maxim模型在使用Imagenet-1K数据的方法中实现最佳准确性(87.8%)。下游任务中的转移性能优于监督预培训并显示有前途的缩放行为。
translated by 谷歌翻译
我们提出了引导蒙面的自动编码器(bootmae),这是一种新的视觉BERT预训练方法。 Bootmae用两个核心设计改进了原始的蒙版自动编码器(MAE):1)动量编码器,该动量编码器可作为额外的BERT预测目标提供在线功能; 2)试图降低编码器的压力以记住目标特定信息的靶向解码器。第一个设计的动机是通过观察到的,即使用预定的MAE提取特征,因为掩盖令牌的BERT预测目标可以实现更好的预训练性能。因此,我们与原始的MAE编码器并行添加了一个动量编码器,该编码器通过将其自己的表示作为BERT预测目标来引导预处理性能。在第二个设计中,我们将特定于目标的信息(例如,未掩盖贴片的像素值)直接传达到解码器中,以减少记住目标特定信息的编码器的压力。因此,编码器专注于语义建模,这是BERT预训练的目的,并且不需要浪费其在记住与预测目标相关的未掩盖令牌的信息时的能力。通过广泛的实验,我们的Bootmae在ImageNet-1k上获得了$ 84.2 \%$ $ $ $+0.8 \%$在同一预训练时期。 Bootmae还获得了$+1.0 $ MIOU在ADE20K上的语义细分和$+1.3 $ box ap,$+1.4 $+1.4 $ bask ap改进对象检测和可可数据集上的细分。代码在https://github.com/lightdxy/bootmae上发布。
translated by 谷歌翻译
The combination of transformers and masked image modeling (MIM) pre-training framework has shown great potential in various vision tasks. However, the pre-training computational budget is too heavy and withholds the MIM from becoming a practical training paradigm. This paper presents FastMIM, a simple and generic framework for expediting masked image modeling with the following two steps: (i) pre-training vision backbones with low-resolution input images; and (ii) reconstructing Histograms of Oriented Gradients (HOG) feature instead of original RGB values of the input images. In addition, we propose FastMIM-P to progressively enlarge the input resolution during pre-training stage to further enhance the transfer results of models with high capacity. We point out that: (i) a wide range of input resolutions in pre-training phase can lead to similar performances in fine-tuning phase and downstream tasks such as detection and segmentation; (ii) the shallow layers of encoder are more important during pre-training and discarding last several layers can speed up the training stage with no harm to fine-tuning performance; (iii) the decoder should match the size of selected network; and (iv) HOG is more stable than RGB values when resolution transfers;. Equipped with FastMIM, all kinds of vision backbones can be pre-trained in an efficient way. For example, we can achieve 83.8%/84.1% top-1 accuracy on ImageNet-1K with ViT-B/Swin-B as backbones. Compared to previous relevant approaches, we can achieve comparable or better top-1 accuracy while accelerate the training procedure by $\sim$5$\times$. Code can be found in https://github.com/ggjy/FastMIM.pytorch.
translated by 谷歌翻译
我们呈现蒙版特征预测(MaskFeat),用于自我监督的视频模型的预训练。我们的方法首先随机地掩盖输入序列的一部分,然后预测蒙面区域的特征。我们研究五种不同类型的功能,找到面向导向渐变(HOG)的直方图,手工制作的特征描述符,在性能和效率方面尤其良好。我们观察到猪中的局部对比标准化对于良好的结果至关重要,这与使用HOG进行视觉识别的早期工作符合。我们的方法可以学习丰富的视觉知识和基于大规模的变压器的模型。在不使用额外的模型重量或监督的情况下,在未标记视频上预先培训的MaskFeat在动力学-400上使用MVIT-L达到86.7%的前所未有的结果,在动力学-600,88.3%上,88.3%,在动力学-700,88.8地图上SSV2上的75.0%。 MaskFeat进一步推广到图像输入,其可以被解释为具有单个帧的视频,并在想象中获得竞争结果。
translated by 谷歌翻译
蒙面图像建模(MIM)在各种视觉任务上取得了令人鼓舞的结果。但是,学到的表示形式的有限可区分性表现出来,使一个更强大的视力学习者还有很多值得一试。为了实现这一目标,我们提出了对比度蒙面的自动编码器(CMAE),这是一种新的自我监督的预训练方法,用于学习更全面和有能力的视觉表示。通过详细统一的对比度学习(CL)和掩盖图像模型(MIM),CMAE利用了它们各自的优势,并以强大的实例可辨别性和局部的可感知来学习表示形式。具体而言,CMAE由两个分支组成,其中在线分支是不对称的编码器编码器,而目标分支是动量更新的编码器。在培训期间,在线编码器从蒙面图像的潜在表示中重建了原始图像,以学习整体特征。馈送完整图像的目标编码器通过其在线学习通过对比度学习增强了功能可区分性。为了使CL与MIM兼容,CMAE引入了两个新组件,即用于生成合理的正视图和特征解码器的像素移位,以补充对比度对的特征。多亏了这些新颖的设计,CMAE可以有效地提高了MIM对应物的表示质量和转移性能。 CMAE在图像分类,语义分割和对象检测的高度竞争基准上实现了最先进的性能。值得注意的是,CMAE-BASE在Imagenet上获得了$ 85.3 \%$ $ TOP-1的准确性和$ 52.5 \%$ MIOU的ADE20K,分别超过了$ 0.7 \%\%$ $和$ 1.8 \%$ $。代码将公开可用。
translated by 谷歌翻译
在过去的几年中,基于自我注意力的变压器模型一直在主导许多计算机视觉任务。它们的出色模型质量在很大程度上取决于标记过多的图像数据集。为了减少对大型标记数据集的依赖,基于重建的掩盖自动编码器正在获得流行,这些自动编码器从未标记的图像中学习了高质量的可转移表示形式。出于同样的目的,最近弱监督的图像预处理方法探索了图像随附的文本字幕的语言监督。在这项工作中,我们提出了对语言辅助代表的预读图像,称为米兰。我们的预处理目标不是预测原始像素或低级别的特征,而是用使用字幕监督获得的大量语义信号来重建图像特征。此外,为了适应我们的重建目标,我们提出了更有效的促使解码器体系结构和语义意识到的掩码采样机制,从而进一步推进了预告片模型的传输性能。实验结果表明,米兰的精度比以前的工作更高。当掩盖的自动编码器在ImagEnet-1K数据集上进行了预估计并以224x224的输入分辨率进行了填充时,米兰在VITB/16上的前1位准确性达到了85.4%,使以前的先前最先前的艺术品达到1%。在下游的语义分割任务中,米兰在ADE20K数据集上使用VIT-B/16骨架达到52.7 MIOU,表现优于先前的蒙版预读结果4分。
translated by 谷歌翻译
最近,自我监督的蒙面自动编码器(MAE)因其令人印象深刻的表示能力而引起了前所未有的关注。但是,借口任务是掩盖的图像建模(MIM),重建缺失的本地贴片,缺乏对图像的全局理解。本文通过添加有监督的分类部门将MAE扩展到了完全监督的环境,从而使Mae可以从Golden Labels中有效地学习全球功能。所提出的监督MAE(Supmae)仅利用图像贴片的可见子集进行分类,这与使用所有图像贴片的标准监督预训练不同。通过实验,我们证明了Supmae不仅更有效地训练,而且还学会了更健壮和可转移的功能。具体而言,Supmae在使用VIT-B/16模型的ImageNet上评估时仅使用30%的计算来实现MAE的可比性。 Supmae对ImageNet变体的鲁棒性和转移学习绩效优于MAE和标准监督前培训对手。代码将公开可用。
translated by 谷歌翻译
Autoregressive language modeling (ALM) have been successfully used in self-supervised pre-training in Natural language processing (NLP). However, this paradigm has not achieved comparable results with other self-supervised approach in computer vision (e.g., contrastive learning, mask image modeling). In this paper, we try to find the reason why autoregressive modeling does not work well on vision tasks. To tackle this problem, we fully analyze the limitation of visual autoregressive methods and proposed a novel stochastic autoregressive image modeling (named SAIM) by the two simple designs. First, we employ stochastic permutation strategy to generate effective and robust image context which is critical for vision tasks. Second, we create a parallel encoder-decoder training process in which the encoder serves a similar role to the standard vision transformer focus on learning the whole contextual information, and meanwhile the decoder predicts the content of the current position, so that the encoder and decoder can reinforce each other. By introducing stochastic prediction and the parallel encoder-decoder, SAIM significantly improve the performance of autoregressive image modeling. Our method achieves the best accuracy (83.9%) on the vanilla ViT-Base model among methods using only ImageNet-1K data. Transfer performance in downstream tasks also show that our model achieves competitive performance.
translated by 谷歌翻译
We present Fast Language-Image Pre-training (FLIP), a simple and more efficient method for training CLIP. Our method randomly masks out and removes a large portion of image patches during training. Masking allows us to learn from more image-text pairs given the same wall-clock time and contrast more samples per iteration with similar memory footprint. It leads to a favorable trade-off between accuracy and training time. In our experiments on 400 million image-text pairs, FLIP improves both accuracy and speed over the no-masking baseline. On a large diversity of downstream tasks, FLIP dominantly outperforms the CLIP counterparts trained on the same data. Facilitated by the speedup, we explore the scaling behavior of increasing the model size, data size, or training length, and report encouraging results and comparisons. We hope that our work will foster future research on scaling vision-language learning.
translated by 谷歌翻译
Driven by improved architectures and better representation learning frameworks, the field of visual recognition has enjoyed rapid modernization and performance boost in the early 2020s. For example, modern ConvNets, represented by ConvNeXt, have demonstrated strong performance in various scenarios. While these models were originally designed for supervised learning with ImageNet labels, they can also potentially benefit from self-supervised learning techniques such as masked autoencoders (MAE). However, we found that simply combining these two approaches leads to subpar performance. In this paper, we propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation. We also provide pre-trained ConvNeXt V2 models of various sizes, ranging from an efficient 3.7M-parameter Atto model with 76.7% top-1 accuracy on ImageNet, to a 650M Huge model that achieves a state-of-the-art 88.9% accuracy using only public training data.
translated by 谷歌翻译
通过开发基于生成的自我监督学习(SSL)方法,例如Beit和Mae,如何通过掩盖输入图像的随机补丁并重建缺失信息来学习良好的表示形式。但是,Beit和Peco需要一个“预先陈述”阶段,以生成用于掩盖补丁代表的离散代码手册。 MAE不需要预训练的代码簿流程,但是将像素设置为重建目标可能会引入前训练和下游任务之间的优化差距,即良好的重建质量可能并不总是会导致模型的高描述能力。考虑到上述问题,在本文中,我们提出了一个简单的自鉴定的蒙面自动编码器网络,即SDAE。 SDAE由一个使用编码器解码器结构的学生分支组成,以重建缺失的信息,并制作一个师范分支,生产蒙版代币的潜在表示。我们还分析了如何从信息瓶颈的角度来为教师分支机构建立潜在代表性的好看法。之后,我们提出了一种多重掩蔽策略,以提供多个掩盖视图,并具有平衡的信息以提高性能,这也可以降低计算复杂性。我们的方法很好地概括了:只有300个时期预训练,香草vit-base模型在Imagenet-1K分类上达到了84.1%的微调精度,48.6 MIOU在ADE20K细分方面和48.9 coco检测中的MAP,它超过了其他方法,从而超过其他方法。通过相当大的边距。代码可从https://github.com/abrahamyabo/sdae获得。
translated by 谷歌翻译
通常需要在大型数据集上进行预训练的视频变压器,以在相对较小的数据集上实现首要性能。在本文中,我们表明视频蒙面的自动编码器(Videomae)是用于自我监督视频预训练(SSVP)的数据效率学习者。我们的启发受到了最近的ImageMae的启发,并提出了具有极高比例的定制视频管掩蔽。这种简单的设计使视频重建成为更具挑战性的自我判断任务,从而鼓励在此预训练过程中提取更有效的视频表示。我们在SSVP上获得了三个重要发现:(1)屏蔽比的比例极高(即90%至95%)仍然可以产生良好的视频性能。在时间上冗余的视频内容比图像更高的掩蔽率。 (2)视频在很小的数据集(即3K-4K视频)上取得了令人印象深刻的结果,而无需使用任何额外的数据。 (3)视频表明,数据质量比SSVP的数据数量更重要。在培训和目标数据集之间的域转移是一个重要问题。值得注意的是,我们与香草VIT的视频在动力学400上可以达到85.8%,在不使用任何额外数据的情况下,在HMDB51上的V2上有75.3%,UCF101的某些东西为75.3%,在UCF101上获得90.8%,HMDB51上的90.8%和61.1%。代码可从https://github.com/mcg-nju/videomae获得。
translated by 谷歌翻译
大规模数据集的预培训模型,如想象成,是计算机视觉中的标准实践。此范例对于具有小型培训套的任务特别有效,其中高容量模型往往会过度装备。在这项工作中,我们考虑一个自我监督的预训练场景,只能利用目标任务数据。我们考虑数据集,如斯坦福汽车,草图或可可,这是比想象成小的数量的顺序。我们的研究表明,在本文中介绍的Beit或诸如Beit或Variant的去噪对预训练数据的类型和大小比通过比较图像嵌入来训练的流行自我监督方法更加强大。我们获得了竞争性能与ImageNet预训练相比,来自不同域的各种分类数据集。在Coco上,当专注于使用Coco Images进行预训练时,检测和实例分割性能超过了可比设置中的监督Imagenet预训练。
translated by 谷歌翻译
本文介绍了Simmim,这是一个简单的蒙面图像建模框架。我们在没有特殊设计的情况下简化了最近提出的相关方法,例如通过离散VAE或聚类的块状掩蔽和令牌化。要研究蒙版图像建模任务学习良好的表示,我们系统地研究了我们框架中的主要组成部分,并发现每个组件的简单设计揭示了非常强烈的表示学习性能:1)用中等的输入图像随机掩蔽输入图像大型蒙面贴片尺寸(例如,32)进行了强大的文本前任务; 2)通过直接回归预测RGB值的原始像素不比具有复杂设计的补丁分类方法更差; 3)预测头可以像线性层一样光,性能比较重的形式更差。使用VIT-B,我们的方法通过预训练在此数据集上进行预培训,我们的方法在ImageNet-1K上实现了83.8%的精细调整精度,超过了以前最佳方法+ 0.6%。当应用于大约6.5亿参数的更大模型时,SwinV2-H,它在Imagenet-1K上使用Imagenet-1K数据实现了87.1%的前1个精度。我们还利用这种方法来促进3B模型(SWINV2-G)的培训,比以前的实践中的数据减少40美元,我们在四个代表性视觉基准上实现了最先进的。代码和模型将在https://github.com/microsoft/simmim公开使用。
translated by 谷歌翻译
我们提出蒙版频率建模(MFM),这是一种基于统一的基于频域的方法,用于自我监督的视觉模型预训练。在本文中,我们将视角转移到了频域中,而不是将蒙版令牌随机插入到空间域中的输入嵌入。具体而言,MFM首先掩盖了输入图像的一部分频率分量,然后预测频谱上的缺失频率。我们的关键见解是,由于沉重的空间冗余,预测频域中的屏蔽组件更理想地揭示了基础图像模式,而不是预测空间域中的掩盖斑块。我们的发现表明,通过对蒙版和预测策略的正确配置,高频组件中的结构信息和低频对应物中的低级统计信息都有用。 MFM首次证明,对于VIT和CNN,即使没有使用以下内容,简单的非叙事框架也可以学习有意义的表示形式:(i)额外的数据,(ii)额外的模型,(iii)蒙版令牌。与最近的蒙版图像建模方法相比,对成像网和几个鲁棒性基准的实验结果表明,MFM的竞争性能和高级鲁棒性。此外,我们还全面研究了从统一的频率角度来表示经典图像恢复任务对表示学习的有效性,并揭示了他们与MFM方法的有趣关系。项目页面:https://www.mmlab-ntu.com/project/mfm/index.html。
translated by 谷歌翻译
本文探讨了贝尔视觉变压器预训练的更好的码本。最近的工作成功地转移了从NLP到视野领域的BERT预训练。它直接采用一个简单的离散VAE作为视觉销售器,但尚未考虑由此产生的视觉令牌的语义水平。相比之下,NLP字段中的离散令牌是自然的高度语义。这种差异激励我们学习一个感知码本。我们惊奇地找到了一个简单而有效的想法:在DVAE训练期间强制执行感知相似性。我们证明,所提出的感知码本生成的视觉令牌确实表现出更好的语义含义,随后有助于预训练在各种下游任务中实现卓越的转移性能。例如,我们在Imagenet-1K上实现了84.5前1个精度,vit-B骨干,优于竞争方法Beit +1.3,具有相同的训练纪元。它还可以通过+1.3框AP和+1.0掩模AP,在ADE20K上的语义细分,在ADE20K上提高对象检测和分割任务的性能,+1.0 miou,代码和型号将在\ url {https:// github.com/microsoft/peco}。
translated by 谷歌翻译
自我监督学习(SSL)在各种下游视觉任务上表现出色。已经提出了两个主流SSL框架,即实例歧视(ID)和蒙版图像建模(MIM)。 ID从同一图像中汇总了不同视图的表示,同时避免了特征崩溃。它在线性探测器上表现良好,但在检测性能方面较低。另一方面,MIM重建了给定的蒙版图像的原始内容。它在密集的预测下表现出色,但在线性探测方面表现不佳。它们的区别是由于忽略语义一致性或空间敏感性的表示要求而引起的。具体而言,我们观察到(1)语义对齐要求在语义上相似的观点要投影到附近的代表中,这可以通过将不同的观点与强烈的增强进行对比来实现; (2)空间灵敏度需要对图像中的局部结构进行建模。因此,用掩盖图像预测致密表示是有益的,因为它模拟了图像含量的条件分布。在这些分析的驱动下,我们提出了暹罗图像建模(SIM),该图像模型(SIM)预测了增强视图的密集表示,基于来自同一图像的另一种掩盖视图,但具有不同的增强。我们的方法使用一个带有两个分支的暹罗网络。在线分支编码第一个视图,并根据这两个视图之间的相对位置预测第二视图的表示。目标分支通过编码第二视图来产生目标。通过这种方式,我们能够分别使用ID和MIM实现可比的线性探测和密集的预测性能。我们还证明,可以在没有全球损失的情况下获得体面的线性探测结果。代码应在https://github.com/fundamentalvision/siamese-image-modeling上发布。
translated by 谷歌翻译
This paper does not describe a novel method. Instead, it studies a straightforward, incremental, yet must-know baseline given the recent progress in computer vision: selfsupervised learning for Vision Transformers (ViT). While the training recipes for standard convolutional networks have been highly mature and robust, the recipes for ViT are yet to be built, especially in the self-supervised scenarios where training becomes more challenging. In this work, we go back to basics and investigate the effects of several fundamental components for training self-supervised ViT. We observe that instability is a major issue that degrades accuracy, and it can be hidden by apparently good results. We reveal that these results are indeed partial failure, and they can be improved when training is made more stable. We benchmark ViT results in MoCo v3 and several other selfsupervised frameworks, with ablations in various aspects. We discuss the currently positive evidence as well as challenges and open questions. We hope that this work will provide useful data points and experience for future research.
translated by 谷歌翻译
本文研究了基于图像的蒙版自动编码器(MAE)的简单扩展,以从音频谱图中学习自我监督的表示。在MAE中的变压器编码器编码器设计之后,我们的Audio-MAE首先编码具有较高遮罩比的音频谱图斑块,仅通过编码器层馈入非掩盖令牌。然后,解码器重新订购并解码编码的上下文,并用掩码令牌填充,以重建输入频谱图。我们发现将局部窗户注意力纳入解码器是有益的,因为音频谱图在当地时间和频带中高度相关。然后,我们在目标数据集上以较低的掩模比微调编码器。从经验上讲,音频MAE在六个音频和语音分类任务上设定了新的最先进的性能,超过了使用外部监督预训练的其他最新模型。代码和模型将在https://github.com/facebookresearch/audiomae上。
translated by 谷歌翻译
在这项研究中,我们提出了混合图像建模(MixMim),这是一种适用于各种分层视觉变压器的简单但有效的MIM方法。现有的MIM方法用特殊的掩码符号替换输入令牌的随机子集,并旨在从损坏的图像中重建原始图像令牌。但是,我们发现,由于较大的掩蔽率(例如,Beit中的40%),使用蒙版符号会大大减慢训练并引起训练 - 不一致的不一致。相比之下,我们用另一个图像的可见令牌(即创建混合图像)代替一个图像的蒙版令牌。然后,我们进行双重重建以从混合输入中重建原始的两个图像,从而显着提高效率。虽然MixMim可以应用于各种体系结构,但本文探讨了更简单但更强的层次变压器,并使用MixMim -B,-L和-H缩放。经验结果表明,混合mim可以有效地学习高质量的视觉表示。值得注意的是,具有88M参数的MixMIM-B通过预处理600个时期的Imagenet-1k上的TOP-1精度达到了85.1%的TOP-1精度,在MIM方法中为具有可比模型尺寸(例如VIT-B)的神经网络创造了新的记录。此外,其在其他6个数据集上的传输性能显示MixMim比以前的MIM方法更好。代码可从https://github.com/sense-x/mixmim获得。
translated by 谷歌翻译