我们使用从环境物体中提取的语义标志物,用于具有固定固定单眼相机的地面机器人,提出了一种视觉教学和重复(VTR)算法。所提出的算法对摄像机/机器人的起始姿势的变化具有鲁棒性,其中姿势定义为平面位置以及垂直轴周围的方向。 VTR由一个教学阶段组成,其中机器人在规定的路径中移动,以及一个重复阶段,在该阶段中,机器人试图从相同或其他姿势开始重复相同的路径。大多数可用的VTR算法是姿势依赖性的,并且从远离教学阶段的初始姿势开始时,在重复阶段无法表现良好。为了实现更强大的姿势独立性,关键是在教学阶段生成包含摄像头轨迹和周围物体位置的环境的3D语义图。对于特定的实现,我们使用Orb-Slam收集相机姿势和环境的3D点云,而Yolov3则检测环境中的对象。然后,我们组合两个输出以构建语义图。在重复阶段,我们基于检测到的对象和存储的语义映射重新定位机器人。然后,机器人能够朝教学路径移动,并在向前和向后重复。我们已经在不同的情况下测试了所提出的算法,并将其与两项最相关的研究进行了比较。另外,我们将算法与两种基于图像的重新定位方法进行了比较。一个纯粹基于球形 - 萨克,另一个纯粹是结合了超级胶水和兰萨克。结果表明,我们的算法在姿势变化和环境改变方面更加强大。我们的代码和数据可在以下github页面上获得:https://github.com/mmahdavian/semantic_visual_teach_repeat。
translated by 谷歌翻译
在这项工作中,我们探讨了对物体在看不见的世界中同时本地化和映射中的使用,并提出了一个对象辅助系统(OA-Slam)。更确切地说,我们表明,与低级点相比,物体的主要好处在于它们的高级语义和歧视力。相反,要点比代表对象(Cuboid或椭圆形)的通用粗模型具有更好的空间定位精度。我们表明,将点和对象组合非常有趣,可以解决相机姿势恢复的问题。我们的主要贡献是:(1)我们使用高级对象地标提高了SLAM系统的重新定位能力; (2)我们构建了一个能够使用3D椭圆形识别,跟踪和重建对象的自动系统; (3)我们表明,基于对象的本地化可用于重新初始化或恢复相机跟踪。我们的全自动系统允许对象映射和增强姿势跟踪恢复,我们认为这可以极大地受益于AR社区。我们的实验表明,可以从经典方法失败的视点重新定位相机。我们证明,尽管跟踪损失损失,但这种本地化使SLAM系统仍可以继续工作,而这种损失可能会经常发生在不理会的用户中。我们的代码和测试数据在gitlab.inria.fr/tangram/oa-slam上发布。
translated by 谷歌翻译
This paper presents ORB-SLAM, a feature-based monocular SLAM system that operates in real time, in small and large, indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline loop closing and relocalization, and includes full automatic initialization. Building on excellent algorithms of recent years, we designed from scratch a novel system that uses the same features for all SLAM tasks: tracking, mapping, relocalization, and loop closing. A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation. We present an exhaustive evaluation in 27 sequences from the most popular datasets. ORB-SLAM achieves unprecedented performance with respect to other state-of-the-art monocular SLAM approaches. For the benefit of the community, we make the source code public.
translated by 谷歌翻译
在本文中,我们评估了八种流行和开源的3D激光雷达和视觉大满贯(同时定位和映射)算法,即壤土,乐高壤土,lio sam,hdl graph,orb slam3,basalt vio和svo2。我们已经设计了室内和室外的实验,以研究以下项目的影响:i)传感器安装位置的影响,ii)地形类型和振动的影响,iii)运动的影响(线性和角速速度的变化)。我们根据相对和绝对姿势误差比较它们的性能。我们还提供了他们所需的计算资源的比较。我们通过我们的多摄像机和多大摄像机室内和室外数据集进行彻底分析和讨论结果,并确定环境案例的最佳性能系统。我们希望我们的发现可以帮助人们根据目标环境选择一个适合其需求的传感器和相应的SLAM算法组合。
translated by 谷歌翻译
完全自主移动机器人的现实部署取决于能够处理动态环境的强大的大满贯(同时本地化和映射)系统,其中对象在机器人的前面移动以及不断变化的环境,在此之后移动或更换对象。机器人已经绘制了现场。本文介绍了更换式SLAM,这是一种在动态和不断变化的环境中强大的视觉猛烈抨击的方法。这是通过使用与长期数据关联算法结合的贝叶斯过滤器来实现的。此外,它采用了一种有效的算法,用于基于对象检测的动态关键点过滤,该对象检测正确识别了不动态的边界框中的特征,从而阻止了可能导致轨道丢失的功能的耗竭。此外,开发了一个新的数据集,其中包含RGB-D数据,专门针对评估对象级别的变化环境,称为PUC-USP数据集。使用移动机器人,RGB-D摄像头和运动捕获系统创建了六个序列。这些序列旨在捕获可能导致跟踪故障或地图损坏的不同情况。据我们所知,更换 - 峰是第一个对动态和不断变化的环境既有坚固耐用的视觉大满贯系统,又不假设给定的相机姿势或已知地图,也能够实时运行。使用基准数据集对所提出的方法进行了评估,并将其与其他最先进的方法进行了比较,证明是高度准确的。
translated by 谷歌翻译
结合同时定位和映射(SLAM)估计和动态场景建模可以高效地在动态环境中获得机器人自主权。机器人路径规划和障碍避免任务依赖于场景中动态对象运动的准确估计。本文介绍了VDO-SLAM,这是一种强大的视觉动态对象感知SLAM系统,用于利用语义信息,使得能够在场景中进行准确的运动估计和跟踪动态刚性物体,而无需任何先前的物体形状或几何模型的知识。所提出的方法识别和跟踪环境中的动态对象和静态结构,并将这些信息集成到统一的SLAM框架中。这导致机器人轨迹的高度准确估计和对象的全部SE(3)运动以及环境的时空地图。该系统能够从对象的SE(3)运动中提取线性速度估计,为复杂的动态环境中的导航提供重要功能。我们展示了所提出的系统对许多真实室内和室外数据集的性能,结果表明了对最先进的算法的一致和实质性的改进。可以使用源代码的开源版本。
translated by 谷歌翻译
去中心化的国家估计是GPS贬低的地区自动空中群体系统中最基本的组成部分之一,但它仍然是一个极具挑战性的研究主题。本文提出了Omni-swarm,一种分散的全向视觉惯性-UWB状态估计系统,用于解决这一研究利基市场。为了解决可观察性,复杂的初始化,准确性不足和缺乏全球一致性的问题,我们在Omni-warm中引入了全向感知前端。它由立体宽型摄像机和超宽带传感器,视觉惯性探测器,基于多无人机地图的本地化以及视觉无人机跟踪算法组成。前端的测量值与后端的基于图的优化融合在一起。所提出的方法可实现厘米级的相对状态估计精度,同时确保空中群中的全球一致性,这是实验结果证明的。此外,在没有任何外部设备的情况下,可以在全面的无人机间碰撞方面支持,表明全旋转的潜力是自动空中群的基础。
translated by 谷歌翻译
视觉同时定位和映射(VSLAM)在计算机视觉和机器人社区中取得了巨大进展,并已成功用于许多领域,例如自主机器人导航和AR/VR。但是,VSLAM无法在动态和复杂的环境中实现良好的定位。许多出版物报告说,通过与VSLAM结合语义信息,语义VSLAM系统具有近年来解决上述问题的能力。然而,尚无关于语义VSLAM的全面调查。为了填补空白,本文首先回顾了语义VSLAM的发展,并明确着眼于其优势和差异。其次,我们探讨了语义VSLAM的三个主要问题:语义信息的提取和关联,语义信息的应用以及语义VSLAM的优势。然后,我们收集和分析已广泛用于语义VSLAM系统的当前最新SLAM数据集。最后,我们讨论未来的方向,该方向将为语义VSLAM的未来发展提供蓝图。
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译
目前的大流行使医疗系统在高负荷下运行。为了减轻它,具有高自主权的机器人可用于有效地在医院中执行非接触式操作,并减少医务人员和患者之间的交叉感染。虽然语义同步定位和映射(SLAM)技术可以提高机器人的自主权,但语义对象关联仍然是一个值得研究的问题。解决这个问题的关键是通过使用语义信息来正确地将多个对象标志的对象测量相关联,并实时地改进对象地标的姿势。为此,我们提出了一个分层对象关联策略和姿势改进方法。前者由两个级别组成,即短期对象关联和全球性。在第一级,我们采用短期对象关联的多对象跟踪,通过该关联,可以避免其位置关闭的对象之间的不正确关联。此外,短期对象关联可以在第二级别为全局对象关联的对象姿势提供更丰富的对象外观和更强大的估计。为了在地图中优化对象姿势,我们开发一种方法来选择与对象地标相关联的所有对象测量的最佳对象姿势。该方法在七个模拟医院序列1,真正的医院环境和基蒂数据集中综合评估。实验结果表明,我们的方法在对象关联的鲁棒性和准确性方面显然有所改善,以及语义猛烈的轨迹估计。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
单眼语义同时定位和映射(SLAM)的有效对象级别表示仍然缺乏广泛接受的解决方案。在本文中,我们提出了基于结构点的有效表示的使用,以基于姿势格式的配方在单眼语义大满贯系统中用作地标的几何形状。特别是,为姿势图中的地标节点提出了一个反深度参数化,以存储对象位置,方向和大小/比例。所提出的配方是一般的,可以应用于不同的几何形状。在本文中,我们关注的是室内环境,其中人工制品通常具有平面矩形形状,例如窗户,门,橱柜等。模拟中的实验表现出良好的性能,尤其是在对象几何重建中。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
农业行业不断寻求农业生产中涉及的不同过程的自动化,例如播种,收获和杂草控制。使用移动自主机器人执行这些任务引起了极大的兴趣。耕地面向同时定位和映射(SLAM)系统(移动机器人技术的关键)面临着艰巨的挑战,这是由于视觉上的难度,这是由于高度重复的场景而引起的。近年来,已经开发了几种视觉惯性遗传(VIO)和SLAM系统。事实证明,它们在室内和室外城市环境中具有很高的准确性。但是,在农业领域未正确评估它们。在这项工作中,我们从可耕地上的准确性和处理时间方面评估了最相关的最新VIO系统,以便更好地了解它们在这些环境中的行为。特别是,该评估是在我们的车轮机器人记录的大豆领域记录的传感器数据集中进行的,该田间被公开发行为Rosario数据集。评估表明,环境的高度重复性外观,崎terrain的地形产生的强振动以及由风引起的叶子的运动,暴露了当前最新的VIO和SLAM系统的局限性。我们分析了系统故障并突出观察到的缺点,包括初始化故障,跟踪损失和对IMU饱和的敏感性。最后,我们得出的结论是,即使某些系统(例如Orb-Slam3和S-MSCKF)在其他系统方面表现出良好的结果,但应采取更多改进,以使其在某些申请中的农业领域可靠,例如作物行的土壤耕作和农药喷涂。 。
translated by 谷歌翻译
Localization of autonomous unmanned aerial vehicles (UAVs) relies heavily on Global Navigation Satellite Systems (GNSS), which are susceptible to interference. Especially in security applications, robust localization algorithms independent of GNSS are needed to provide dependable operations of autonomous UAVs also in interfered conditions. Typical non-GNSS visual localization approaches rely on known starting pose, work only on a small-sized map, or require known flight paths before a mission starts. We consider the problem of localization with no information on initial pose or planned flight path. We propose a solution for global visual localization on a map at scale up to 100 km2, based on matching orthoprojected UAV images to satellite imagery using learned season-invariant descriptors. We show that the method is able to determine heading, latitude and longitude of the UAV at 12.6-18.7 m lateral translation error in as few as 23.2-44.4 updates from an uninformed initialization, also in situations of significant seasonal appearance difference (winter-summer) between the UAV image and the map. We evaluate the characteristics of multiple neural network architectures for generating the descriptors, and likelihood estimation methods that are able to provide fast convergence and low localization error. We also evaluate the operation of the algorithm using real UAV data and evaluate running time on a real-time embedded platform. We believe this is the first work that is able to recover the pose of an UAV at this scale and rate of convergence, while allowing significant seasonal difference between camera observations and map.
translated by 谷歌翻译
Based on WHO statistics, many individuals are suffering from visual problems, and their number is increasing yearly. One of the most critical needs they have is the ability to navigate safely, which is why researchers are trying to create and improve various navigation systems. This paper provides a navigation concept based on the visual slam and Yolo concepts using monocular cameras. Using the ORB-SLAM algorithm, our concept creates a map from a predefined route that a blind person most uses. Since visually impaired people are curious about their environment and, of course, to guide them properly, obstacle detection has been added to the system. As mentioned earlier, safe navigation is vital for visually impaired people, so our concept has a path-following part. This part consists of three steps: obstacle distance estimation, path deviation detection, and next-step prediction, done by monocular cameras.
translated by 谷歌翻译
Simultaneous Localization & Mapping (SLAM) is the process of building a mutual relationship between localization and mapping of the subject in its surrounding environment. With the help of different sensors, various types of SLAM systems have developed to deal with the problem of building the relationship between localization and mapping. A limitation in the SLAM process is the lack of consideration of dynamic objects in the mapping of the environment. We propose the Dynamic Object Tracking SLAM (DyOb-SLAM), which is a Visual SLAM system that can localize and map the surrounding dynamic objects in the environment as well as track the dynamic objects in each frame. With the help of a neural network and a dense optical flow algorithm, dynamic objects and static objects in an environment can be differentiated. DyOb-SLAM creates two separate maps for both static and dynamic contents. For the static features, a sparse map is obtained. For the dynamic contents, a trajectory global map is created as output. As a result, a frame to frame real-time based dynamic object tracking system is obtained. With the pose calculation of the dynamic objects and camera, DyOb-SLAM can estimate the speed of the dynamic objects with time. The performance of DyOb-SLAM is observed by comparing it with a similar Visual SLAM system, VDO-SLAM and the performance is measured by calculating the camera and object pose errors as well as the object speed error.
translated by 谷歌翻译
失明和低视力(PBLV)的人在定位最终目的地或针对陌生环境中的特定物体时面临重大挑战。此外,除了最初定位和定位目标对象外,从目前的立场接近最终目标通常是令人沮丧和挑战,尤其是当人们摆脱最初的计划途径以避免障碍时。在本文中,我们开发了一种新颖的可穿戴导航解决方案,以为用户提供实时指导,以便在不熟悉的环境中有效地接近感兴趣的目标对象。我们的系统包含两个关键的视觉计算函数:在3D中以3D为中的初始目标对象定位以及对用户轨迹的连续估计,这既基于由用户胸部前面安装在用户胸前的低成本单眼相机捕获的2D视频。这些功能使系统能够提出初始导航路径,在用户移动时不断更新路径,并及时提供有关用户路径校正的建议。我们的实验表明,我们的系统能够以室外和室内的误差小于0.5米的误差操作。该系统完全基于视觉,并且不需要其他传感器进行导航,并且可以使用可穿戴系统中的Jetson处理器进行计算以促进实时导航辅助。
translated by 谷歌翻译
对自主导航和室内应用程序勘探机器人的最新兴趣刺激了对室内同时定位和映射(SLAM)机器人系统的研究。尽管大多数这些大满贯系统使用视觉和激光雷达传感器与探针传感器同时使用,但这些探针传感器会随着时间的流逝而漂移。为了打击这种漂移,视觉大满贯系统部署计算和内存密集型搜索算法来检测“环闭合”,这使得轨迹估计在全球范围内保持一致。为了绕过这些资源(计算和内存)密集算法,我们提出了VIWID,该算法将WiFi和视觉传感器集成在双层系统中。这种双层方法将局部和全局轨迹估计的任务分开,从而使VIWID资源有效,同时实现PAR或更好的性能到最先进的视觉大满贯。我们在四个数据集上展示了VIWID的性能,涵盖了超过1500 m的遍历路径,并分别显示出4.3倍和4倍的计算和记忆消耗量与最先进的视觉和LIDAR SLAM SLAM系统相比,具有PAR SLAM性能。
translated by 谷歌翻译
This paper presents ORB-SLAM3, the first system able to perform visual, visual-inertial and multi-map SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens models.The first main novelty is a feature-based tightly-integrated visual-inertial SLAM system that fully relies on Maximum-a-Posteriori (MAP) estimation, even during the IMU initialization phase. The result is a system that operates robustly in real time, in small and large, indoor and outdoor environments, and is two to ten times more accurate than previous approaches.The second main novelty is a multiple map system that relies on a new place recognition method with improved recall. Thanks to it, ORB-SLAM3 is able to survive to long periods of poor visual information: when it gets lost, it starts a new map that will be seamlessly merged with previous maps when revisiting mapped areas. Compared with visual odometry systems that only use information from the last few seconds, ORB-SLAM3 is the first system able to reuse in all the algorithm stages all previous information. This allows to include in bundle adjustment co-visible keyframes, that provide high parallax observations boosting accuracy, even if they are widely separated in time or if they come from a previous mapping session.Our experiments show that, in all sensor configurations, ORB-SLAM3 is as robust as the best systems available in the literature, and significantly more accurate. Notably, our stereo-inertial SLAM achieves an average accuracy of 3.5 cm in the EuRoC drone and 9 mm under quick hand-held motions in the room of TUM-VI dataset, a setting representative of AR/VR scenarios. For the benefit of the community we make public the source code.
translated by 谷歌翻译