全球合并是许多机器学习模型和任务中最重要的操作之一,但是在实践中,其实施通常是经验的。在这项研究中,我们通过最佳运输镜头开发了一个新颖而坚实的全球合并框架。我们证明,大多数现有的全球合并方法等同于解决不平衡最佳运输(UOT)问题的一些专业。使UOT问题的参数可学习,我们在同一框架中统一了各种全局合并方法,因此,为神经网络提出了一个称为UOT-Pooling(UOTP)的广义全局池层。除了基于经典的Sinkhorn尺度算法实现UOTP层外,我们设计了一种基于Bregman ADMM算法的新模型体系结构,该体系结构具有更好的数值稳定性,并且可以更有效地重现现有的池化层。我们在几种应用程序方案中测试了UOTP层,包括多构度学习,图形分类和图像分类。我们的UOTP层可以模仿常规的全球合并层,也可以学习一些新的合并机制,从而提高性能。
translated by 谷歌翻译
Global pooling is one of the most significant operations in many machine learning models and tasks, which works for information fusion and structured data (like sets and graphs) representation. However, without solid mathematical fundamentals, its practical implementations often depend on empirical mechanisms and thus lead to sub-optimal, even unsatisfactory performance. In this work, we develop a novel and generalized global pooling framework through the lens of optimal transport. The proposed framework is interpretable from the perspective of expectation-maximization. Essentially, it aims at learning an optimal transport across sample indices and feature dimensions, making the corresponding pooling operation maximize the conditional expectation of input data. We demonstrate that most existing pooling methods are equivalent to solving a regularized optimal transport (ROT) problem with different specializations, and more sophisticated pooling operations can be implemented by hierarchically solving multiple ROT problems. Making the parameters of the ROT problem learnable, we develop a family of regularized optimal transport pooling (ROTP) layers. We implement the ROTP layers as a new kind of deep implicit layer. Their model architectures correspond to different optimization algorithms. We test our ROTP layers in several representative set-level machine learning scenarios, including multi-instance learning (MIL), graph classification, graph set representation, and image classification. Experimental results show that applying our ROTP layers can reduce the difficulty of the design and selection of global pooling -- our ROTP layers may either imitate some existing global pooling methods or lead to some new pooling layers fitting data better. The code is available at \url{https://github.com/SDS-Lab/ROT-Pooling}.
translated by 谷歌翻译
作为度量度量空间的有效度量,Gromov-Wasserstein(GW)距离显示了匹配结构化数据(例如点云和图形)问题的潜力。但是,由于其较高的计算复杂性,其实践中的应用受到限制。为了克服这一挑战,我们提出了一种新颖的重要性稀疏方法,称为SPAR-GW,以有效地近似GW距离。特别是,我们的方法没有考虑密集的耦合矩阵,而是利用一种简单但有效的采样策略来构建稀疏的耦合矩阵,并使用几个计算进行更新。我们证明了所提出的SPAR-GW方法适用于GW距离,并以任意地面成本适用于GW距离,并且将复杂性从$ \ Mathcal {o}(n^4)$降低到$ \ Mathcal {o}(n^{2) +\ delta})$对于任意的小$ \ delta> 0 $。另外,该方法可以扩展到近似GW距离的变体,包括熵GW距离,融合的GW距离和不平衡的GW距离。实验表明,在合成和现实世界任务中,我们的SPAR-GW对最先进的方法的优越性。
translated by 谷歌翻译
在用于图形结构数据的几台机器学习任务中,所考虑的图形可以由不同数量的节点组成。因此,需要设计汇集方法,该方法将不同大小的图形表示聚合到固定大小的表示,其可以用于下游任务,例如图形分类。现有的图形池池方法没有关于图形表示的相似性和其汇总版的保证。在这项工作中,我们通过提出流池来解决这些限制,通过最小化其Wassersein距离,通过最佳地将图形表示的统计数据统计到其汇集的对应物。这是通过对汇集的图形表示来执行Wasserstein梯度流来实现的。我们提出了我们的方法,可以通过任何基础成本考虑表示空间的几何形状。该实施依赖于与最近提出的隐式差异化方案的Wasserstein距离的计算。我们的汇集方法可用于自动分化,可以集成在端到端的深度学习架构中。此外,流量池是不变的,因此可以与GNN中的置换设备提取层组合,以便获得与节点的排序无关的预测。实验结果表明,与现有在图形分类任务中的现有汇集方法相比,我们的方法导致性能增加。
translated by 谷歌翻译
比较图形等结构的对象是许多学习任务中涉及的基本操作。为此,基于最优传输(OT)的Gromov-Wasserstein(GW)距离已被证明可以成功处理相关对象的特定性质。更具体地说,通过节点连接关系,GW在图表上运行,视为特定空间上的概率测量。在OT的核心处是质量守恒的想法,这在两个被认为的图表中的所有节点之间施加了耦合。我们在本文中争辩说,这种财产可能对图形字典或分区学习等任务有害,我们通过提出新的半轻松的Gromov-Wasserstein发散来放松它。除了立即计算福利之外,我们讨论其属性,并表明它可以导致有效的图表字典学习算法。我们经验展示其对图形上的复杂任务的相关性,例如分区,聚类和完成。
translated by 谷歌翻译
我们研究了两种可能不同质量的度量之间的不平衡最佳运输(UOT),其中最多是$ n $组件,其中标准最佳运输(OT)的边际约束是通过kullback-leibler差异与正则化因子$ \ tau $放松的。尽管仅在文献中分析了具有复杂性$ o \ big(\ tfrac {\ tau n^2 \ log(n)} {\ varepsilon} \ log \ big(\ tfrac {\ log( n)} {{{\ varepsilon}} \ big)\ big)$)$用于实现错误$ \ varepsilon $,它们与某些深度学习模型和密集的输出运输计划不兼容,强烈阻碍了实用性。虽然被广泛用作计算现代深度学习应用中UOT的启发式方法,并且在稀疏的OT中表现出成功,但尚未正式研究用于UOT的梯度方法。为了填补这一空白,我们提出了一种基于梯度外推法(Gem-uot)的新颖算法,以找到$ \ varepsilon $ -Approximate解决方案,以解决$ o \ big中的UOT问题(\ kappa n^2 \ log \ log \ big(big) \ frac {\ tau n} {\ varepsilon} \ big)\ big)$,其中$ \ kappa $是条件号,具体取决于两个输入度量。我们的算法是通过优化平方$ \ ell_2 $ -norm UOT目标的新的双重配方设计的,从而填补了缺乏稀疏的UOT文献。最后,我们在运输计划和运输距离方面建立了UOT和OT之间近似误差的新颖表征。该结果阐明了一个新的主要瓶颈,该瓶颈被强大的OT文献忽略了:尽管OT放松了OT,因为UOT承认对离群值的稳健性,但计算出的UOT距离远离原始OT距离。我们通过基于Gem-uot从UOT中检索的原则方法来解决此类限制,并使用微调的$ \ tau $和后进程投影步骤来解决。关于合成和真实数据集的实验验证了我们的理论,并证明了我们的方法的良好性能。
translated by 谷歌翻译
人工神经网络(ANN)训练景观的非凸起带来了固有的优化困难。虽然传统的背传播随机梯度下降(SGD)算法及其变体在某些情况下是有效的,但它们可以陷入杂散的局部最小值,并且对初始化和普通公共表敏感。最近的工作表明,随着Relu激活的ANN的培训可以重新重整为凸面计划,使希望能够全局优化可解释的ANN。然而,天真地解决凸训练制剂具有指数复杂性,甚至近似启发式需要立方时间。在这项工作中,我们描述了这种近似的质量,并开发了两个有效的算法,这些算法通过全球收敛保证培训。第一算法基于乘法器(ADMM)的交替方向方法。它解决了精确的凸形配方和近似对应物。实现线性全局收敛,并且初始几次迭代通常会产生具有高预测精度的解决方案。求解近似配方时,每次迭代时间复杂度是二次的。基于“采样凸面”理论的第二种算法更简单地实现。它解决了不受约束的凸形制剂,并收敛到大约全球最佳的分类器。当考虑对抗性培训时,ANN训练景观的非凸起加剧了。我们将稳健的凸优化理论应用于凸训练,开发凸起的凸起制剂,培训Anns对抗对抗投入。我们的分析明确地关注一个隐藏层完全连接的ANN,但可以扩展到更复杂的体系结构。
translated by 谷歌翻译
在这项工作中,我们提出了一批Greenkhorn算法的多压正规化最佳运输问题。我们的框架足够普遍,可以涵盖一些现有的案例,如烟囱和Greenkhorn算法,用于双边缘设置,(贪婪)多光线灯,用于多压最佳运输。我们提供完整的汇聚分析,这是基于具有贪婪控制的迭代BREGMAN投影(IBP)方法的属性。获得了迭代复杂性的全局的收敛性和显式界限。当专门提到上述算法时,我们的结果提供了新的见解和/或改善现有的。
translated by 谷歌翻译
计算分布之间的最佳传输(OT)耦合在机器学习中起着越来越重要的作用。虽然可以将OT问题求解为线性程序,但添加熵平滑项会导致求解器对离群值更快,更强大,可区分且易于并行化。 Sinkhorn固定点算法是这些方法的基石,结果,已经进行了多次尝试以缩短其运行时,例如退火,动量或加速度。本文的前提是,\ textit {initialization}的sindhorn算法受到了相对较少的关注,可能是由于两个先入为主的:由于正规化的ot问题是凸的,因此可能不值得制定量身定制的初始化,因为\ textit {\ textit { }保证工作;其次,由于sindhorn算法在端到端管道中通常是区分的,因此数据依赖性初始化可能会通过展开迭代而获得的偏差梯度估计。我们挑战了这种传统的观点,并表明精心选择的初始化可能会导致巨大的加速,并且不会偏向梯度,这些梯度是通过隐式分化计算的。我们详细介绍如何使用1D或高斯设置中的已知结果从封闭形式或近似OT解决方案中恢复初始化。我们从经验上表明,这些初始化可以在现成的情况下使用,几乎没有调整,并且导致各种OT问题的速度持续加速。
translated by 谷歌翻译
本文介绍了一个基于双基的算法框架,用于求解具有累积的凸奖励,硬资源限制和不可分割的正常化程序的正规在线资源分配问题。在适应性更新资源约束的策略下,所提出的框架仅要求对经验二重性问题的近似解决方案,直到某种准确性,但在本地强烈凸出的假设下给出了最佳的对数遗憾。令人惊讶的是,对双重目标函数的微妙分析使我们能够消除遗憾的臭名昭著的日志因素。灵活的框架呈现出著名的和计算快速算法,例如双梯度下降和随机梯度下降。如果在双重优化过程中没有适应性更新,则建立了最糟糕的平方根遗憾下限,这强调了自适应双重变量更新的关键作用。全面的数值实验和实际数据应用证明了提出的算法框架的优点。
translated by 谷歌翻译
We study distributionally robust optimization (DRO) with Sinkhorn distance -- a variant of Wasserstein distance based on entropic regularization. We provide convex programming dual reformulation for a general nominal distribution. Compared with Wasserstein DRO, it is computationally tractable for a larger class of loss functions, and its worst-case distribution is more reasonable. We propose an efficient first-order algorithm with bisection search to solve the dual reformulation. We demonstrate that our proposed algorithm finds $\delta$-optimal solution of the new DRO formulation with computation cost $\tilde{O}(\delta^{-3})$ and memory cost $\tilde{O}(\delta^{-2})$, and the computation cost further improves to $\tilde{O}(\delta^{-2})$ when the loss function is smooth. Finally, we provide various numerical examples using both synthetic and real data to demonstrate its competitive performance and light computational speed.
translated by 谷歌翻译
将离散域上的功能集成到神经网络中是开发其推理离散对象的能力的关键。但是,离散域是(1)自然不适合基于梯度的优化,并且(2)与依赖于高维矢量空间中表示形式的深度学习体系结构不相容。在这项工作中,我们解决了设置功能的两个困难,这些功能捕获了许多重要的离散问题。首先,我们开发了将设置功能扩展到低维连续域的框架,在该域中,许多扩展是自然定义的。我们的框架包含许多众所周知的扩展,作为特殊情况。其次,为避免不良的低维神经网络瓶颈,我们将低维扩展转换为高维空间中的表示形式,从半际计划进行组合优化的成功中获得了灵感。从经验上讲,我们观察到扩展对无监督的神经组合优化的好处,特别是具有高维其表示。
translated by 谷歌翻译
In this paper, we study the design and analysis of a class of efficient algorithms for computing the Gromov-Wasserstein (GW) distance tailored to large-scale graph learning tasks. Armed with the Luo-Tseng error bound condition~\citep{luo1992error}, two proposed algorithms, called Bregman Alternating Projected Gradient (BAPG) and hybrid Bregman Proximal Gradient (hBPG) enjoy the convergence guarantees. Upon task-specific properties, our analysis further provides novel theoretical insights to guide how to select the best-fit method. As a result, we are able to provide comprehensive experiments to validate the effectiveness of our methods on a host of tasks, including graph alignment, graph partition, and shape matching. In terms of both wall-clock time and modeling performance, the proposed methods achieve state-of-the-art results.
translated by 谷歌翻译
指数族在机器学习中广泛使用,包括连续和离散域中的许多分布(例如,通过SoftMax变换,Gaussian,Dirichlet,Poisson和分类分布)。这些家庭中的每个家庭的分布都有固定的支持。相比之下,对于有限域而言,最近在SoftMax稀疏替代方案(例如Sparsemax,$ \ alpha $ -entmax和Fusedmax)的稀疏替代方案中导致了带有不同支持的分布。本文基于几种技术贡献,开发了连续分布的稀疏替代方案:首先,我们定义了$ \ omega $ regultion的预测图和任意域的Fenchel-young损失(可能是无限或连续的)。对于线性参数化的家族,我们表明,Fenchel-Young损失的最小化等效于统计的矩匹配,从而概括了指数家族的基本特性。当$ \ omega $是带有参数$ \ alpha $的Tsallis negentropy时,我们将获得````trabormed rompential指数)'',其中包括$ \ alpha $ -entmax和sparsemax和sparsemax($ \ alpha = 2 $)。对于二次能量函数,产生的密度为$ \ beta $ -Gaussians,椭圆形分布的实例,其中包含特殊情况,即高斯,双重量级,三人级和epanechnikov密度,我们为差异而得出了差异的封闭式表达式, Tsallis熵和Fenchel-Young损失。当$ \ Omega $是总变化或Sobolev正常化程序时,我们将获得Fusedmax的连续版本。最后,我们引入了连续的注意机制,从\ {1、4/3、3/3、3/2、2 \} $中得出有效的梯度反向传播算法。使用这些算法,我们证明了我们的稀疏连续分布,用于基于注意力的音频分类和视觉问题回答,表明它们允许参加时间间隔和紧凑区域。
translated by 谷歌翻译
通常通过将许多输入张量汇总为单个表示形式来处理神经网络中神经网络中的处理集或其他无序的,潜在的变化大小的输入。尽管从简单的汇总到多头关注已经存在许多聚合方法,但从理论和经验的角度来看,它们的代表力都受到限制。在搜索主要功能更强大的聚合策略时,我们提出了一种基于优化的方法,称为平衡聚​​集。我们表明,许多现有的聚合方法可以作为平衡聚集的特殊情况恢复,并且在某些重要情况下,它效率更高。在许多现有的架构和应用中,平衡聚集可以用作置换式替换。我们在三个不同的任务上验证其效率:中值估计,班级计数和分子性质预测。在所有实验中,平衡聚集的性能都比我们测试的其他聚合技术更高。
translated by 谷歌翻译
由于机器学习,统计和科学的应用,多边缘最佳运输(MOT)引起了极大的兴趣。但是,在大多数应用中,MOT的成功受到缺乏有效算法的严重限制。实际上,MOT一般需要在边际K及其支撑大小n的数量中指数时间n。本文开发了一个关于“结构”在poly(n,k)时间中可溶解的一般理论。我们开发了一个统一的算法框架,用于通过表征不同算法所需的“结构”来解决poly(n,k)时间中的MOT,这是根据双重可行性甲骨文的简单变体所需的。该框架有几个好处。首先,它使我们能够证明当前是最流行的MOT算法的Sinkhorn算法比其他算法要在poly(n,k)时间中求解MOT所需的结构更严格。其次,我们的框架使得为给定的MOT问题开发poly(n,k)时间算法变得更加简单。特别是(大约)解决双重可行性Oracle是必要和足够的 - 这更适合标准算法技术。我们通过为三个通用类成本结构类别的poly(n,k)时间算法开发poly(n,k)时间算法来说明这种易用性:(1)图形结构; (2)设定优化结构; (3)低阶和稀疏结构。对于结构(1),我们恢复了Sindhorn具有poly(n,k)运行时的已知结果;此外,我们为计算精确且稀疏的解决方案提供了第一个poly(n,k)时间算法。对于结构(2) - (3),我们给出了第一个poly(n,k)时间算法,甚至用于近似计算。这三个结构一起涵盖了许多MOT的当前应用。
translated by 谷歌翻译
安全的加强学习(RL)旨在学习在将其部署到关键安全应用程序中之前满足某些约束的政策。以前的原始双重风格方法遭受了不稳定性问题的困扰,并且缺乏最佳保证。本文从概率推断的角度克服了问题。我们在政策学习过程中介绍了一种新颖的期望最大化方法来自然纳入约束:1)在凸优化(E-step)后,可以以封闭形式计算可证明的最佳非参数变异分布; 2)基于最佳变异分布(M-step),在信任区域内改进了策略参数。提出的算法将安全的RL问题分解为凸优化阶段和监督学习阶段,从而产生了更稳定的培训性能。对连续机器人任务进行的广泛实验表明,所提出的方法比基线获得了更好的约束满意度和更好的样品效率。该代码可在https://github.com/liuzuxin/cvpo-safe-rl上找到。
translated by 谷歌翻译
在概率密度范围内相对于Wassersein度量的空间的梯度流程通常具有很好的特性,并且已在几种机器学习应用中使用。计算Wasserstein梯度流量的标准方法是有限差异,使网格上的基础空间离散,并且不可扩展。在这项工作中,我们提出了一种可扩展的近端梯度型算法,用于Wassersein梯度流。我们的方法的关键是目标函数的变分形式,这使得可以通过引流 - 双重优化实现JKO近端地图。可以通过替代地更新内部和外环中的参数来有效地解决该原始问题。我们的框架涵盖了包括热方程和多孔介质方程的所有经典Wasserstein梯度流。我们展示了若干数值示例的算法的性能和可扩展性。
translated by 谷歌翻译
我们研究了摊销优化的使用来预测输入度量的最佳运输(OT)图,我们称之为元。通过利用过去问题的知识和信息来快速预测和解决新问题,这有助于反复解决不同措施之间的类似OT问题。否则,标准方法忽略了过去解决方案的知识,并从头开始重新解决每个问题。元模型在离散设置中超过了log-sinkhorn求解器的标准收敛速率,并在连续设置中凸电势。我们通过在图像,球形数据和调色板之间的离散和连续传输设置中多个数量级来改善标准ot求解器的计算时间。我们的源代码可在http://github.com/facebookresearch/meta-ot上找到。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译