培训有效的视频和语言模型直观地需要多个帧作为模型输入。但是,目前尚不清楚使用多个帧是否有利于下游任务,如果是的话,性能增益是否值得通过使用更多帧产生的巨大计算和内存成本。在这项工作中,我们探索了视频和语言学习的单帧模型。在各种视频和语言任务(包括文本到视频检索和视频问题)上,我们显示出令人惊讶的结果,即通过大规模的预训练和适当的框架合奏在推理时,与使用多个训练的现有方法相比,不考虑时间信息的单帧训练模型可以实现更好的性能。该结果揭示了流行的视频和语言数据集中存在强烈的“静态外观偏差”。因此,为了对视频和语言模型进行更全面的评估,我们建议基于现有的细粒度识别数据集,提出了两个新的检索任务,以鼓励时间建模。我们的代码可从https://github.com/jayleicn/singularity获得
translated by 谷歌翻译
Video-language pre-training has advanced the performance of various downstream video-language tasks. However, most previous methods directly inherit or adapt typical image-language pre-training paradigms to video-language pre-training, thus not fully exploiting the unique characteristic of video, i.e., temporal. In this paper, we propose a Hierarchical Temporal-Aware video-language pre-training framework, HiTeA, with two novel pre-training tasks for modeling cross-modal alignment between moments and texts as well as the temporal relations of video-text pairs. Specifically, we propose a cross-modal moment exploration task to explore moments in videos, which results in detailed video moment representation. Besides, the inherent temporal relations are captured by aligning video-text pairs as a whole in different time resolutions with multi-modal temporal relation exploration task. Furthermore, we introduce the shuffling test to evaluate the temporal reliance of datasets and video-language pre-training models. We achieve state-of-the-art results on 15 well-established video-language understanding and generation tasks, especially on temporal-oriented datasets (e.g., SSv2-Template and SSv2-Label) with 8.6% and 11.1% improvement respectively. HiTeA also demonstrates strong generalization ability when directly transferred to downstream tasks in a zero-shot manner. Models and demo will be available on ModelScope.
translated by 谷歌翻译
Video-language pre-training is crucial for learning powerful multi-modal representation. However, it typically requires a massive amount of computation. In this paper, we develop SMAUG, an efficient pre-training framework for video-language models. The foundation component in SMAUG is masked autoencoders. Different from prior works which only mask textual inputs, our masking strategy considers both visual and textual modalities, providing a better cross-modal alignment and saving more pre-training costs. On top of that, we introduce a space-time token sparsification module, which leverages context information to further select only "important" spatial regions and temporal frames for pre-training. Coupling all these designs allows our method to enjoy both competitive performances on text-to-video retrieval and video question answering tasks, and much less pre-training costs by 1.9X or more. For example, our SMAUG only needs about 50 NVIDIA A6000 GPU hours for pre-training to attain competitive performances on these two video-language tasks across six popular benchmarks.
translated by 谷歌翻译
The canonical approach to video-and-language learning (e.g., video question answering) dictates a neural model to learn from offline-extracted dense video features from vision models and text features from language models. These feature extractors are trained independently and usually on tasks different from the target domains, rendering these fixed features sub-optimal for downstream tasks. Moreover, due to the high computational overload of dense video features, it is often difficult (or infeasible) to plug feature extractors directly into existing approaches for easy finetuning. To provide a remedy to this dilemma, we propose a generic framework CLIPBERT that enables affordable endto-end learning for video-and-language tasks, by employing sparse sampling, where only a single or a few sparsely sampled short clips from a video are used at each training step. Experiments on text-to-video retrieval and video question answering on six datasets demonstrate that CLIP-BERT outperforms (or is on par with) existing methods that exploit full-length videos, suggesting that end-to-end learning with just a few sparsely sampled clips is often more accurate than using densely extracted offline features from full-length videos, proving the proverbial less-is-more principle. Videos in the datasets are from considerably different domains and lengths, ranging from 3-second genericdomain GIF videos to 180-second YouTube human activity videos, showing the generalization ability of our approach. Comprehensive ablation studies and thorough analyses are provided to dissect what factors lead to this success. Our code is publicly available. 1 * Equal contribution.
translated by 谷歌翻译
近年来,统一的视觉语言框架已经大大提高,其中大多数采用编码器架构将图像文本任务统一为序列到序列的生成。但是,现有的视频语言(VIDL)模型仍需要在每个任务的模型体系结构和培训目标中进行特定于任务的设计。在这项工作中,我们探索了一个统一的VIDL框架薰衣草,其中蒙版语言建模(MLM)用作所有前训练和下游任务的常见接口。这样的统一导致了简化的模型体系结构,在多模式编码器之上,只需要一个轻巧的MLM头,而不是具有更多参数的解码器。令人惊讶的是,实验结果表明,这个统一的框架在14个VIDL基准测试中实现了竞争性能,涵盖了视频问答,文本到视频检索和视频字幕。广泛的分析进一步证明了薰衣草比现有VIDL方法的优势:(i)在多任务列出时仅使用一组参数值支持所有下游任务; (ii)对各种下游任务的几乎没有概括; (iii)在视频问题回答任务上启用零射门评估。代码可从https://github.com/microsoft/lavender获得。
translated by 谷歌翻译
视频语言(VIDL)建模的巨大挑战在于从图像/视频理解模型和下游Vidl数据中提取的固定视频表示之间的断开。最近的研究试图通过端到端培训来减轻这种断开连接。为了使其进行计算可行,先前的作品倾向于“想象”视频输入,即,将一些稀疏的采样帧馈送到2D CNN中,然后是简单的均值汇集或连接以获得整体视频表示。虽然实现了有希望的结果,但这种简单的方法可能会失去对于执行下游VIDL任务至关重要的时间信息。在这项工作中,我们呈现紫罗兰色,全新的视频语言变压器,采用视频变压器,明确地模拟视频输入的时间动态。此外,与以前的研究不同,发现视频输入上的预训练任务(例如,屏蔽帧建模)不是非常有效的,我们设计了一个新的预训练任务,屏蔽了视觉令牌建模(MVM),以获得更好的视频建模。具体地,原始视频帧修补程序将“令牌化”转换为离散的视觉令牌,目标是基于蒙面的贴片恢复原始的视觉令牌。综合分析展示了通过视频变压器和MVM显式时间建模的有效性。因此,紫罗兰在5个视频问题的回答任务和4个文本到视频检索任务中实现了新的最先进的性能。
translated by 谷歌翻译
The last several years have witnessed remarkable progress in video-and-language (VidL) understanding. However, most modern VidL approaches use complex and specialized model architectures and sophisticated pretraining protocols, making the reproducibility, analysis and comparisons of these frameworks difficult. Hence, instead of proposing yet another new VidL model, this paper conducts a thorough empirical study demystifying the most important factors in the VidL model design. Among the factors that we investigate are (i) the spatiotemporal architecture design, (ii) the multimodal fusion schemes, (iii) the pretraining objectives, (iv) the choice of pretraining data, (v) pretraining and finetuning protocols, and (vi) dataset and model scaling. Our empirical study reveals that the most important design factors include: temporal modeling, video-to-text multimodal fusion, masked modeling objectives, and joint training on images and videos. Using these empirical insights, we then develop a step-by-step recipe, dubbed VindLU, for effective VidL pretraining. Our final model trained using our recipe achieves comparable or better than state-of-the-art results on several VidL tasks without relying on external CLIP pretraining. In particular, on the text-to-video retrieval task, our approach obtains 61.2% on DiDeMo, and 55.0% on ActivityNet, outperforming current SOTA by 7.8% and 6.1% respectively. Furthermore, our model also obtains state-of-the-art video question-answering results on ActivityNet-QA, MSRVTT-QA, MSRVTT-MC and TVQA. Our code and pretrained models are publicly available at: https://github.com/klauscc/VindLU.
translated by 谷歌翻译
本文介绍了Omnivl,这是一种新的基础模型,旨在使用一种通用体系结构来支持图像语言和视频语言任务。它为图像和视频输入采用了统一的基于变压器的视觉编码器,因此可以执行联合图像语言和视频语言预处理。我们首次证明了这样的范式受益于图像和视频任务,而不是传统的单向传输(例如,使用图像语言来帮助视频语言)。为此,我们提出了对图像语言和视频语言的脱钩关节预处理,以有效地将视觉模型分解为空间和时间维度,并在图像和视频任务上获得性能提升。此外,我们引入了一种新颖的统一视觉对比度(UNIVLC)损失,以利用图像文本,视频文本,图像标签(例如,图像分类),视频标签(例如,视频动作识别)在一起受到监督和吵闹的监督预处理数据都尽可能多地利用。无需额外的任务适配器,Omnivl可以同时支持仅视觉任务(例如,图像分类,视频操作识别),跨模式对齐任务(例如,图像/视频 - 文本检索)和多模式理解和生成任务(例如,图像/视频问答,字幕)。我们在各种下游任务上评估Omnivl,并以相似的模型大小和数据量表获得最新的或竞争结果。
translated by 谷歌翻译
视频和语言预培训表明对各种下游任务有望改善。最先前的方法捕获与基于变换器的多模式编码器的跨模型交互,不完全解决单向视频和文本特征之间的错位。此外,学习细粒度的视觉语言对准通常需要离上的对象检测器来提供对象信息,这是由检测器有限的词汇和昂贵的计算成本的瓶颈。我们建议对齐和提示:一种高效有效的视频和语言预训练框架,具有更好的跨模型对齐。首先,我们介绍了一个视频文本对比(VTC)丢失,以对准实例级别的单峰视频文本功能,从而缓解跨模型交互的建模。然后,我们提出了一种新的视觉接地预训练任务,提示实体建模(PEM),旨在学习细粒度的区域实体对齐。为实现这一目标,我们首先介绍一个实体发射模块,该模块用VTC培训,以产生与实体名称实例化的视频裁剪和文本提示之间的相似性。 PEM任务然后询问模型以预测随机选择的视频作物的实体伪标签(I.E〜归一化相似度分数)。由此产生的预先训练的模型在文本 - 视频检索和VideoQ上实现了最先进的性能,通过大幅度的边距表现优于现有的工作。我们的代码和预先训练的型号将被释放。
translated by 谷歌翻译
This work explores an efficient approach to establish a foundational video-text model for tasks including open-vocabulary video classification, text-to-video retrieval, video captioning and video question-answering. We present VideoCoCa that reuses a pretrained image-text contrastive captioner (CoCa) model and adapt it to video-text tasks with minimal extra training. While previous works adapt image-text models with various cross-frame fusion modules (for example, cross-frame attention layer or perceiver resampler) and finetune the modified architecture on video-text data, we surprisingly find that the generative attentional pooling and contrastive attentional pooling layers in the image-text CoCa design are instantly adaptable to ``flattened frame embeddings'', yielding a strong zero-shot transfer baseline for many video-text tasks. Specifically, the frozen image encoder of a pretrained image-text CoCa takes each video frame as inputs and generates \(N\) token embeddings per frame for totally \(T\) video frames. We flatten \(N \times T\) token embeddings as a long sequence of frozen video representation and apply CoCa's generative attentional pooling and contrastive attentional pooling on top. All model weights including pooling layers are directly loaded from an image-text CoCa pretrained model. Without any video or video-text data, VideoCoCa's zero-shot transfer baseline already achieves state-of-the-art results on zero-shot video classification on Kinetics 400/600/700, UCF101, HMDB51, and Charades, as well as zero-shot text-to-video retrieval on MSR-VTT and ActivityNet Captions. We also explore lightweight finetuning on top of VideoCoCa, and achieve strong results on video question-answering (iVQA, MSRVTT-QA, MSVD-QA) and video captioning (MSR-VTT, ActivityNet, Youcook2). Our approach establishes a simple and effective video-text baseline for future research.
translated by 谷歌翻译
探索大规模预处理的基础模型对计算机视觉具有重大兴趣,因为这些模型可以快速转移到许多下游任务中。本文介绍了对比字幕(COCA),这是一种极简主义的设计,旨在为图像文本编码器编码器基础模型预算与对比度损失和字幕损失,从而从剪辑和诸如simvlm之类的生成方法之类的对比方法中包含模型能力。与所有解码器层都参与编码器输出的标准编码器 - 模块变压器相反,可口可乐省略了解码器层的上半部分的交叉注意,以编码单峰文本表示,并串联到剩余的解码器层,这些解码器与图像编码器相交的解码器层多模式图像文本表示。除了对多模态解码器输出的字幕损失外,我们还应用了单峰图像和文本嵌入之间的对比损失,该输出可以预测文本令牌自动加压。通过共享相同的计算图,可以用最小的开销有效地计算两个培训目标。可口可乐是端到端和从头开始的网络尺度alt-text数据和带注释的图像,通过将所有标签视为文本,无缝地统一自然语言监督以进行表示。从经验上讲,可口可乐通过零拍传输或在广泛的下游任务上进行零摄像转移或最少的特定任务适应,跨越视觉识别(Imagenet,Kinetics-400/600/700,瞬间, ),交叉模式检索(MSCOCO,FLICKR30K,MSR-VTT),多模式理解(VQA,SNLI-VE,NLVR2)和图像字幕(MSCOCO,NOCAPS)。值得注意的是,在Imagenet分类方面,COCA获得了86.3%的TOP-1准确性,带有冷冻编码器和学习的分类头90.6%,以及带有填充编码器的Imagenet上的新最先进的91.0%Top-1 Top-1精度。
translated by 谷歌翻译
构建一个通用视频语言模型,用于解决各种视频理解任务(例如,文本视频检索,视频问答)是对机器学习领域的开放挑战。为了实现这一目标,最近的尝试训练模型,通常由单峰和跨模式的特征编码器组成,并具有受监督或成对的对比度的预文本任务。尽管提供了有吸引力的通用性,但最终的模型必须在效率和性能之间妥协。我们认为这些缺陷是由它们的预训练策略\ Textemdash引起的,它们不能很好地对齐和融合不同方式的特征。然后,我们将三叶草(一种相关的视频预培训方法)介绍给一个通用的视频语言模型,该模型用于解决既不效率也不妥协的多个视频理解任务。它通过新的三模式比对预训练任务来改善跨模式特征对齐和融合。此外,我们建议通过合并蒙面样品的学习和新颖的成对排名损失来增强三模式对齐。三叶草表现出了出色的一般性。它在多个下游任务上建立了新的最新技术,包括零射击和微调设置的三个检索任务,以及八个视频问答任务。代码和预培训模型将在https://github.com/leeyn-43/clover上发布。
translated by 谷歌翻译
蒙版的视觉建模(MVM)最近已被证明对视觉预训练有效。虽然在视频输入(例如,蒙版框架建模)上进行了类似的重建目标,在视频语言(VIDL)预训练中探索了类似的重建目标,但先前研究中的预提取的视频功能在预训练期间无法通过MVM进行完善,因此无法通过MVM进行完善为下游性能不满意。在这项工作中,我们系统地检查了MVM在VIDL学习的背景下的潜力。具体而言,我们的研究基于完全端到端的视频变压器(Violet),该视频变压器(Violet)减轻了固定视频表示与MVM培训之间的断开连接。总共探索了MVM的八个不同的重建目标,从低级像素值和定向梯度到高级深度图,光流,离散的视觉令牌和潜在的视觉特征。我们进行全面的实验,并就导致有效MVM培训的因素提供见解。从经验上讲,我们展示了通过MVM目标预先训练的紫罗兰色,可以在13个VIDL基准测试中取得显着改进,从视频问题回答,视频字幕到文本到视频检索等等。
translated by 谷歌翻译
视频问题回答(VideoQA)是一项复杂的任务,需要多种模式数据进行培训。但是,对视频的问题和答案的手动注释是乏味的,禁止可扩展性。为了解决这个问题,最近的方法考虑了零拍设置,而无需手动注释视觉问题。特别是,一种有前途的方法调整了在网络级文本数据中预测的冻结自回归语言模型,以适应多模式输入。相比之下,我们在这里建立在冷冻双向语言模型(BILM)的基础上,并表明这种方法为零拍出的VideoQA提供了更强大,更便宜的替代方案。特别是(i)我们使用轻型训练模块将视觉输入与冷冻的BILM结合在一起,(ii)我们使用Web-Scrafe Multi-Mododal数据训练此类模块,最后(iii)我们通过掩盖语言执行零声录像带推断建模,其中蒙版文本是给定问题的答案。我们提出的方法Frozenbilm在零摄影的视频中的表现优于最高的,包括LSMDC-FIB,包括LSMDC-FIB,IVQA,MSRVTT-QA,MSVD-QA,ActivityNet-QA,TGIF-FRAMEQA,TGIF-FRAMEQA,,TGIF-FRAMEQA,,TGIF-FRAMEQA,,,MSRVTT-QA,MSRVTT-QA,MSRVTT-QA,MSRVTT-QA,MSRVTT-QA,,均优于最新技术。 How2QA和TVQA。它还在几次且完全监督的环境中展示了竞争性能。我们的代码和模型将在https://antoyang.github.io/frozenbilm.html上公开提供。
translated by 谷歌翻译
近年来,具有两个较高架构的视觉语言(VL)模型主导了视觉表示的学习。当前的VL模型要么使用轻型Uni-Modal编码器,并在交叉模式编码器中同时提取,对齐和融合这两种模态,或者将最后一层的Uni-Modal-Modal特征直接馈入顶部的交叉模式编码器,而忽略了语义深度单模式编码器中不同级别的信息。两种方法都可能限制视觉表示学习和限制模型性能。在本文中,我们介绍了多个桥梁层,该层在Uni-Modal编码器的顶层和跨模式编码器的每一层之间建立了连接。这可以在不同语义级别的视觉和文本表示之间进行全面的自下而上相互作用,从而导致更有效的跨模式对齐和融合。我们提出的桥梁可以预先训练,仅需$ 4 $ m的图像,可以在各种下游视觉语言任务上实现最先进的性能。在VQAV2 Test-STD集合中,Bridge-Tower的准确性为$ 78.73 \%$,与以前的最先进的仪表型号相同的the Art仪表均优于先前的最先进的仪表\%$ $,并且几乎没有其他参数,并且几乎没有其他参数和其他参数计算成本。值得注意的是,当进一步扩展模型时,桥梁可以达到81.15美元\%$的准确性,超过了在较大的数据集中预先训练的模型。代码可在https://github.com/microsoft/bridgetower上找到。
translated by 谷歌翻译
Vision-and语言(VL)预培训已被证明对各种VL下游任务非常有效。虽然最近的工作表明,基于完全变换器的VL模型可以比以前的基于区域特征的方法更有效,但它们在下游任务上的性能通常显着降低。在本文中,我们呈现仪表〜(\ textbf {m} ultimodal \ textbf {e} nd-to-text \ textbf {t} ransform \ textbf {er}),我们通过它系统地调查如何设计和预先列车基于完全变换器的VL模型以端到端的方式。具体而言,我们将模型设计沿多个尺寸分析:视觉编码器(例如,剪辑 - vit,Swin变压器),文本编码器(例如,Roberta,Deberta),多模式融合(例如,合并注意力与共同关注),架构设计(例如,仅编码器与编码器 - 解码器)和预训练目标(例如,屏蔽图像建模)。我们对广泛的VL任务进行全面实验,并提供有关如何在保持快速推理速度的同时培训表演VL变压器的见解。值得注意的是,仪表〜使用仅使用4M图像进行预培训的VQAV2 TEST-STD设置的精度为77.64 \%,超过最先进的区域特征的VINVL模型+1.04 \%,以及优于以前最好的完全变换器的ALBEF模型+1.6 \%。
translated by 谷歌翻译
We introduce LaViLa, a new approach to learning video-language representations by leveraging Large Language Models (LLMs). We repurpose pre-trained LLMs to be conditioned on visual input, and finetune them to create automatic video narrators. Our auto-generated narrations offer a number of advantages, including dense coverage of long videos, better temporal synchronization of the visual information and text, and much higher diversity of text. The video-text embedding learned contrastively with these additional auto-generated narrations outperforms the previous state-of-the-art on multiple first-person and third-person video tasks, both in zero-shot and finetuned setups. Most notably, LaViLa obtains an absolute gain of 10.1% on EGTEA classification and 5.9% Epic-Kitchens-100 multi-instance retrieval benchmarks. Furthermore, LaViLa trained with only half the narrations from the Ego4D dataset outperforms baseline models trained on the full set, and shows positive scaling behavior on increasing pre-training data and model size.
translated by 谷歌翻译
通过网络视频的快速增长,视频语言建模引起了很多关注。大多数现有方法都假定视频帧和文本描述是语义上关联的,并专注于视频级别的视频模型。但是,该假设通常是有两个原因的:(1)凭借视频内容丰富的语义,很难用单个视频级别的描述覆盖所有帧; (2)原始视频通常具有嘈杂/毫无意义的信息(例如,镜头,过渡或预告片)。尽管最近的许多作品部署了注意力来减轻此问题,但无关/嘈杂的信息仍然使得很难解决。为了克服此类挑战,我们提出了一个高效有效的模型,称为语言引导网络(LGDN),用于视频语言建模。与使用所有提取的视频帧的大多数现有方法不同,LGDN在语言监督下动态过滤了未对准或冗余的帧,并且每个视频仅获得2---4个显着帧,以进行交叉模式令牌级别的对准。在五个公共数据集上进行的广泛实验表明,我们的LGDN优于最先进的利润率。我们还提供了详细的消融研究,以揭示解决噪声问题的关键重要性,以启发未来的视频语言工作。
translated by 谷歌翻译
我们研究了联合视频和语言(VL)预培训,以实现跨模型学习和益处丰富的下游VL任务。现有的作品要么提取低质量的视频特征或学习有限的文本嵌入,但忽略了高分辨率视频和多样化的语义可以显着提高跨模型学习。在本文中,我们提出了一种新的高分辨率和多样化的视频 - 语言预训练模型(HD-VILA),用于许多可视任务。特别是,我们收集具有两个不同属性的大型数据集:1)第一个高分辨率数据集包括371.5k小时的720p视频,2)最多样化的数据集涵盖15个流行的YouTube类别。为了启用VL预培训,我们通过学习丰富的时空特征的混合变压器联合优化HD-VILA模型,以及多峰变压器,用于强制学习视频功能与多样化文本的交互。我们的预训练模式实现了新的最先进的导致10 VL了解任务和2个新颖的文本到视觉生成任务。例如,我们以零拍摄MSR-VTT文本到视频检索任务的相对增加38.5%R @ 1的相对增长,高分辨率数据集LSMDC为53.6%。学习的VL嵌入也有效地在文本到视觉操纵和超分辨率任务中产生视觉上令人愉悦和语义相关结果。
translated by 谷歌翻译
视觉语言(VL)预训练最近受到了广泛的关注。但是,大多数现有的端到端预训练方法只旨在解决诸如图像文本检索,视觉询问答案(VQA)和图像字幕等VL任务,以测试对图像的高级了解,或者仅对目标区域进行测试 - 对诸如短语接地和对象检测等任务的水平理解。我们提出了Fiber(基于回避的变压器),这是一种新的VL模型体系结构,可以无缝处理这两种类型的任务。 Fiber没有将多模式融合到模型深处,而不是将融合后的专用变压器层用于融合,而是通过将交叉注意力插入图像和文本骨干杆中,从而在记忆和性能方面带来了增长。此外,与以前的工作不同,它要么仅在图像文本数据上进行训练,要么在带有框级注释的细粒度数据上进行培训,我们提出了一种两阶段的预训练策略,该策略有效地使用了这两种数据:(( i)基于图像文本数据的粗粒细化预训练;然后是(ii)基于图像文本框数据的细粒度预训练。我们对各种VL任务进行全面的实验,从VQA,图像字幕和检索到短语接地,参考表达理解和对象检测。使用深层多模式融合,结合两阶段的预训练,光纤可对所有任务的强基础进行一致的性能改进,通常使用幅度更优于更多数据的方法。代码可从https://github.com/microsoft/fiber获得。
translated by 谷歌翻译