当环境标签未知时,我们研究不变学习的问题。当贝叶斯最佳条件标签分布在不同环境中相同时,我们将重点放在不变的表示概念上。先前的工作通过最大化不变风险最小化(IRM)框架的罚款来进行环境推理(EI)。 EI步骤使用的参考模型侧重于虚假相关性,以有效地达到良好的环境分区。但是,尚不清楚如何找到这样的参考模型。在这项工作中,我们建议重复EI过程,并在先前的EI步骤推断出的\ textit {多数}环境上重复ERM模型。在温和的假设下,我们发现这种迭代过程有助于学习比单一步骤更好地捕获虚假相关性的表示。这会导致更好的环境推理和更好的不变学习。我们表明,该方法在合成数据集和现实世界数据集上的表现优于基准。
translated by 谷歌翻译
Learning models that gracefully handle distribution shifts is central to research on domain generalization, robust optimization, and fairness. A promising formulation is domain-invariant learning, which identifies the key issue of learning which features are domain-specific versus domaininvariant. An important assumption in this area is that the training examples are partitioned into "domains" or "environments". Our focus is on the more common setting where such partitions are not provided. We propose EIIL, a general framework for domain-invariant learning that incorporates Environment Inference to directly infer partitions that are maximally informative for downstream Invariant Learning. We show that EIIL outperforms invariant learning methods on the CMNIST benchmark without using environment labels, and significantly outperforms ERM on worst-group performance in the Waterbirds and CivilComments datasets. Finally, we establish connections between EIIL and algorithmic fairness, which enables EIIL to improve accuracy and calibration in a fair prediction problem.
translated by 谷歌翻译
通过推断培训数据中的潜在群体,最近的作品将不可用的注释不可用的情况引入不变性学习。通常,在大多数/少数族裔分裂下学习群体不变性在经验上被证明可以有效地改善许多数据集的分布泛化。但是,缺乏这些关于学习不变机制的理论保证。在本文中,我们揭示了在防止分类器依赖于培训集中的虚假相关性的情况下,现有小组不变学习方法的不足。具体来说,我们提出了两个关于判断这种充分性的标准。从理论和经验上讲,我们表明现有方法可以违反标准,因此未能推广出虚假的相关性转移。在此激励的情况下,我们设计了一种新的组不变学习方法,该方法构建具有统计独立性测试的组,并按组标签重新启动样本,以满足标准。关于合成数据和真实数据的实验表明,新方法在推广到虚假相关性转移方面显着优于现有的组不变学习方法。
translated by 谷歌翻译
We propose a Target Conditioned Representation Independence (TCRI) objective for domain generalization. TCRI addresses the limitations of existing domain generalization methods due to incomplete constraints. Specifically, TCRI implements regularizers motivated by conditional independence constraints that are sufficient to strictly learn complete sets of invariant mechanisms, which we show are necessary and sufficient for domain generalization. Empirically, we show that TCRI is effective on both synthetic and real-world data. TCRI is competitive with baselines in average accuracy while outperforming them in worst-domain accuracy, indicating desired cross-domain stability.
translated by 谷歌翻译
研究兴趣大大增加了将数据驱动方法应用于力学问题的问题。尽管传统的机器学习(ML)方法已经实现了许多突破,但它们依赖于以下假设:培训(观察到的)数据和测试(看不见)数据是独立的且分布相同的(i.i.d)。因此,当应用于未知的测试环境和数据分布转移的现实世界力学问题时,传统的ML方法通常会崩溃。相反,分布(OOD)的概括假定测试数据可能会发生变化(即违反I.I.D.假设)。迄今为止,已经提出了多种方法来改善ML方法的OOD概括。但是,由于缺乏针对OOD回归问题的基准数据集,因此这些OOD方法在主导力学领域的回归问题上的效率仍然未知。为了解决这个问题,我们研究了机械回归问题的OOD泛化方法的性能。具体而言,我们确定了三个OOD问题:协变量移位,机制移位和采样偏差。对于每个问题,我们创建了两个基准示例,以扩展机械MNIST数据集收集,并研究了流行的OOD泛化方法在这些机械特定的回归问题上的性能。我们的数值实验表明,在大多数情况下,与传统的ML方法相比,在大多数情况下,在这些OOD问题上的传统ML方法的性能更好,但迫切需要开发更强大的OOD概括方法,这些方法在多个OOD场景中有效。总体而言,我们希望这项研究以及相关的开放访问基准数据集将进一步开发用于机械特定回归问题的OOD泛化方法。
translated by 谷歌翻译
域泛化(DG)的主要挑战是克服多个训练域和看不见的测试域之间的潜在分布偏移。一类流行的DG算法旨在学习在训练域中具有不变因果关系的表示。但是,某些特征,称为\ emph {伪不变特征},可能是培训域中的不变性,但不是测试域,并且可以大大降低现有算法的性能。为了解决这个问题,我们提出了一种新颖的算法,称为不变信息瓶颈(IIB),该算法学习跨越训练和测试域的最小值的最小值。通过最大限度地减少表示和输入之间的相互信息,IIB可以减轻其对伪不变特征的依赖,这对于DG是期望的。为了验证IIB原则的有效性,我们对大型DG基准进行了广泛的实验。结果表明,在两个评估度量标准中,IIB的IIIb平均超过2.8 \%和3.8 \%的准确性。
translated by 谷歌翻译
尽管无偏见的机器学习模型对于许多应用程序至关重要,但偏见是一个人为定义的概念,可以在任务中有所不同。只有输入标签对,算法可能缺乏足够的信息来区分稳定(因果)特征和不稳定(虚假)特征。但是,相关任务通常具有类似的偏见 - 我们可以利用在转移环境中开发稳定的分类器的观察结果。在这项工作中,我们明确通知目标分类器有关源任务中不稳定功能的信息。具体而言,我们得出一个表示,该表示通过对比源任务中的不同数据环境来编码不稳定的功能。我们通过根据此表示形式将目标任务的数据聚类来实现鲁棒性,并最大程度地降低这些集群中最坏情况的风险。我们对文本和图像分类进行评估。经验结果表明,我们的算法能够在合成生成的环境和现实环境的目标任务上保持鲁棒性。我们的代码可在https://github.com/yujiabao/tofu上找到。
translated by 谷歌翻译
尽管机器学习模型迅速推进了各种现实世界任务的最先进,但鉴于这些模型对虚假相关性的脆弱性,跨域(OOD)的概括仍然是一个挑战性的问题。尽管当前的域概括方法通常着重于通过新的损耗函数设计在不同域上实施某些不变性属性,但我们提出了一种平衡的迷你批次采样策略,以减少观察到的训练分布中域特异性的虚假相关性。更具体地说,我们提出了一种两步方法,该方法1)识别虚假相关性的来源,以及2)通过在确定的来源上匹配,构建平衡的迷你批次而没有虚假相关性。我们提供了伪造来源的可识别性保证,并表明我们提出的方法是从所有培训环境中平衡,无虚拟分布的样本。实验是在三个具有伪造相关性的计算机视觉数据集上进行的,从经验上证明,与随机的迷你批次采样策略相比,我们平衡的微型批次采样策略可改善四个不同建立的域泛化模型基线的性能。
translated by 谷歌翻译
最近的学习不变(因果)特征(OOD)概括最近引起了广泛的关注,在建议中不变风险最小化(IRM)(Arjovsky等,2019)是一个显着的解决方案。尽管其对线性回归的理论希望,但在线性分类问题中使用IRM的挑战仍然存在(Rosenfeld等,2020; Nagarajan等,2021)。沿着这一行,最近的一项研究(Arjovsky等人,2019年)迈出了第一步,并提出了基于信息瓶颈的不变风险最小化的学习原理(IB-imm)。在本文中,我们首先表明(Arjovsky等人,2019年)使用不变特征的支持重叠的关键假设对于保证OOD泛化是相当强大的,并且在没有这种假设的情况下仍然可以实现最佳解决方案。为了进一步回答IB-IRM是否足以在线性分类问题中学习不变特征的问题,我们表明IB-IRM在两种情况下仍将失败,无论是否不变功能捕获有关标签的所有信息。为了解决此类失败,我们提出了一个\ textit {基于反事实的信息瓶颈(CSIB)}学习算法,该算法可恢复不变的功能。即使从单个环境访问数据时,提出的算法也可以工作,并且在理论上对二进制和多类问题都具有一致的结果。我们对三个合成数据集进行了经验实验,以验证我们提出的方法的功效。
translated by 谷歌翻译
Distributional shift is one of the major obstacles when transferring machine learning prediction systems from the lab to the real world. To tackle this problem, we assume that variation across training domains is representative of the variation we might encounter at test time, but also that shifts at test time may be more extreme in magnitude. In particular, we show that reducing differences in risk across training domains can reduce a model's sensitivity to a wide range of extreme distributional shifts, including the challenging setting where the input contains both causal and anticausal elements. We motivate this approach, Risk Extrapolation (REx), as a form of robust optimization over a perturbation set of extrapolated domains (MM-REx), and propose a penalty on the variance of training risks (V-REx) as a simpler variant. We prove that variants of REx can recover the causal mechanisms of the targets, while also providing some robustness to changes in the input distribution ("covariate shift"). By tradingoff robustness to causally induced distributional shifts and covariate shift, REx is able to outperform alternative methods such as Invariant Risk Minimization in situations where these types of shift co-occur.
translated by 谷歌翻译
域泛化算法使用来自多个域的培训数据来学习概括到未经识别域的模型。虽然最近提出的基准证明大多数现有算法不优于简单的基线,但建立的评估方法未能暴露各种因素的影响,这有助于性能不佳。在本文中,我们提出了一个域泛化算法的评估框架,其允许将误差分解成组件捕获概念的不同方面。通过基于域不变表示学习的思想的算法的普遍性的启发,我们扩展了评估框架,以捕获在实现不变性时捕获各种类型的失败。我们表明,泛化误差的最大贡献者跨越方法,数据集,正则化强度甚至培训长度各不相同。我们遵守与学习域不变表示的策略相关的两个问题。在彩色的MNIST上,大多数域泛化算法失败,因为它们仅在训练域上达到域名不变性。在Camelyon-17上,域名不变性会降低看不见域的表示质量。我们假设专注于在丰富的代表之上调整分类器可以是有希望的方向。
translated by 谷歌翻译
现实世界的分类问题必须与域移位竞争,该域移动是部署模型的域之间的(潜在)不匹配以及收集训练数据的域。处理此类问题的方法必须指定域之间哪种结构与什么变化。一个自然的假设是,因果关系(结构)关系在所有领域都是不变的。然后,很容易学习仅取决于其因果父母的标签$ y $的预测指标。但是,许多现实世界中的问题是“反农产品”,因为$ y $是协变量$ x $的原因 - 在这种情况下,$ y $没有因果父母,而天真的因果不变性是没有用的。在本文中,我们研究了在特定的域转移概念下的表示形式学习,该概念既尊重因果不变性又自然处理“反毒物”结构。我们展示了如何利用域的共享因果结构来学习一个表示不变预测因子的表示,并且还允许在新域中快速适应。关键是将因果假设转化为学习原理,这些学习原理“不变”和“不稳定”特征。关于合成数据和现实世界数据的实验证明了所提出的学习算法的有效性。代码可在https://github.com/ybjiaang/actir上找到。
translated by 谷歌翻译
机器学习算法通常假设培训和测试示例是从相同的分布中汲取的。然而,分发转移是现实世界应用中的常见问题,并且可以在测试时间造成模型急剧执行。在本文中,我们特别考虑域移位和亚泊素班次的问题(例如,不平衡数据)。虽然先前的作品通常会寻求明确地将模型的内部表示和预测器进行明确,以成为域不变的,但我们旨在规范整个功能而不限制模型的内部表示。这导致了一种简单的基于混合技术,它通过名为LISA的选择性增强来学习不变函数。 Lisa选择性地用相同的标签而单独地插值样本,但不同的域或具有相同的域但不同的标签。我们分析了线性设置,从理论上展示了LISA如何导致较小的最差组错误。凭经验,我们研究了LISA对从亚本化转变到域移位的九个基准的有效性,我们发现LISA一直以其他最先进的方法表达。
translated by 谷歌翻译
域名(ood)概括是机器学习模型的重大挑战。已经提出了许多技术来克服这一挑战,通常专注于具有某些不变性属性的学习模型。在这项工作中,我们绘制了ood性能和模型校准之间的链接,争论跨多个域的校准可以被视为一个特殊的表达,导致更好的EOD泛化。具体而言,我们表明,在某些条件下,实现\ EMPH {多域校准}的模型可被证明无杂散相关性。这导致我们提出多域校准作为分类器的性能的可测量和可训练的代理。因此,我们介绍了易于申请的方法,并允许从业者通过训练或修改现有模型来改善多域校准,从而更好地在看不见的域上的性能。使用最近提出的野外的四个数据集以及彩色的MNIST数据集,我们证明了训练或调整模型,以便在多个域中校准它们导致在看不见的测试域中显着提高性能。我们认为,校准和革建化之间的这种有趣联系是从一个实际和理论的观点出发的。
translated by 谷歌翻译
Despite impressive success in many tasks, deep learning models are shown to rely on spurious features, which will catastrophically fail when generalized to out-of-distribution (OOD) data. Invariant Risk Minimization (IRM) is proposed to alleviate this issue by extracting domain-invariant features for OOD generalization. Nevertheless, recent work shows that IRM is only effective for a certain type of distribution shift (e.g., correlation shift) while it fails for other cases (e.g., diversity shift). Meanwhile, another thread of method, Adversarial Training (AT), has shown better domain transfer performance, suggesting that it has the potential to be an effective candidate for extracting domain-invariant features. This paper investigates this possibility by exploring the similarity between the IRM and AT objectives. Inspired by this connection, we propose Domainwise Adversarial Training (DAT), an AT-inspired method for alleviating distribution shift by domain-specific perturbations. Extensive experiments show that our proposed DAT can effectively remove domain-varying features and improve OOD generalization under both correlation shift and diversity shift.
translated by 谷歌翻译
分布式概括(OOD)都是关于对环境变化的学习不变性。如果每个类中的上下文分布均匀分布,则OOD将是微不足道的,因为由于基本原则,可以轻松地删除上下文:类是上下文不变的。但是,收集这种平衡的数据集是不切实际的。学习不平衡的数据使模型偏见对上下文,从而伤害了OOD。因此,OOD的关键是上下文平衡。我们认为,在先前工作中广泛采用的假设,可以直接从偏见的类预测中注释或估算上下文偏差,从而使上下文不完整甚至不正确。相比之下,我们指出了上述原则的另一面:上下文对于类也不变,这激励我们将类(已经被标记为已标记的)视为不同环境以解决上下文偏见(没有上下文标签)。我们通过最大程度地减少阶级样本相似性的对比损失,同时确保这种相似性在所有类别中不变,从而实现这一想法。在具有各种上下文偏见和域间隙的基准测试中,我们表明,配备了我们上下文估计的简单基于重新加权的分类器实现了最新的性能。我们在https://github.com/simpleshinobu/irmcon上提供了附录中的理论理由和代码。
translated by 谷歌翻译
不变的风险最小化(IRM)框架旨在从一组环境中学习不变的功能,以解决分发超出(OOD)泛化问题。底层假设是数据生成分布的因果组件在环境中仍然是常量,或者交替地,跨环境中的数据“重叠”以找到有意义的不变功能。因此,当“重叠”假设不保持时,一组真正不变的特征可能不足以以获得最佳预测性能。这种情况自然地出现在网络设置和分层数据生成模型中,其中IRM性能变为次优。为了减轻这种故障情况,我们争论部分不变性框架。关键的想法是通过基于分层差异对环境进行分区来引入IRM框架的灵活性,同时在分区内本地实施不变性。我们在分类设置中激励此框架,其中包括跨环境的因果分布。我们的结果表明,部分不变风险最小化的能力,以减轻在某些环境中的公平性和风险之间的权衡。
translated by 谷歌翻译
尽管最近在欧几里得数据(例如图像)上使用不变性原理(OOD)概括(例如图像),但有关图数据的研究仍然受到限制。与图像不同,图形的复杂性质给采用不变性原理带来了独特的挑战。特别是,图表上的分布变化可以以多种形式出现,例如属性和结构,因此很难识别不变性。此外,在欧几里得数据上通常需要的域或环境分区通常需要的图形可能非常昂贵。为了弥合这一差距,我们提出了一个新的框架,以捕获图形的不变性,以在各种分配变化下进行保证的OOD概括。具体而言,我们表征了具有因果模型的图形上的潜在分布变化,得出结论,当模型仅关注包含有关标签原因最多信息的子图时,可以实现图形上的OOD概括。因此,我们提出了一个信息理论目标,以提取最大地保留不变的阶级信息的所需子图。用这些子图学习不受分配变化的影响。对合成和现实世界数据集进行的广泛实验,包括在AI ADED药物发现中充满挑战的环境,验证了我们方法的上等OOD概括能力。
translated by 谷歌翻译
最近,提出了不变的风险最小化(IRM)作为解决分布外(OOD)概括的有前途的解决方案。但是,目前尚不清楚何时应优先于广泛的经验风险最小化(ERM)框架。在这项工作中,我们从样本复杂性的角度分析了这两个框架,从而迈出了一个坚定的一步,以回答这个重要问题。我们发现,根据数据生成机制的类型,这两种方法可能具有有限样本和渐近行为。例如,在协变量偏移设置中,我们看到两种方法不仅达到了相同的渐近解决方案,而且具有相似的有限样本行为,没有明显的赢家。但是,对于其他分布变化,例如涉及混杂因素或反毒物变量的变化,两种方法到达不同的渐近解决方案,在这些方法中,保证IRM可以接近有限样品状态中所需的OOD溶液,而ERM甚至偶然地偏向于渐近。我们进一步研究了不同因素(环境的数量,模型的复杂性和IRM惩罚权重)如何影响IRM的样本复杂性与其距离OOD溶液的距离有关
translated by 谷歌翻译
The goal of domain generalization algorithms is to predict well on distributions different from those seen during training. While a myriad of domain generalization algorithms exist, inconsistencies in experimental conditions-datasets, architectures, and model selection criteria-render fair and realistic comparisons difficult. In this paper, we are interested in understanding how useful domain generalization algorithms are in realistic settings. As a first step, we realize that model selection is non-trivial for domain generalization tasks. Contrary to prior work, we argue that domain generalization algorithms without a model selection strategy should be regarded as incomplete. Next, we implement DOMAINBED, a testbed for domain generalization including seven multi-domain datasets, nine baseline algorithms, and three model selection criteria. We conduct extensive experiments using DO-MAINBED and find that, when carefully implemented, empirical risk minimization shows state-of-the-art performance across all datasets. Looking forward, we hope that the release of DOMAINBED, along with contributions from fellow researchers, will streamline reproducible and rigorous research in domain generalization. * Alphabetical order, equal contribution.Preprint. Under review.
translated by 谷歌翻译