我们提出了一种称为钢筋混合遗传算法(RHGA)的新型方法,用于解决着名的NP-Hard Travel推销员问题(TSP)。具体地,我们将加强学习技术与众所周知的边缘组装交叉遗传算法(EAX-GA)和Lin-Kernighan-Helsgaun(LKH)本地搜索启发式组合。借助拟议的混合机制,EAX-GA的遗传演进和LKH的本地搜索可以促进彼此的性能。基于Q学习的加强学习技术进一步促进了混合遗传算法。在138众名知名度和广泛使用的TSP基准测试中的实验结果与1,000至85,900的城市数量呈现出rhGA的优异性能,显着优于EAX-GA和LKH。
translated by 谷歌翻译
旅行推销员问题(TSP)是许多实用变体的经典NP-HARD组合优化问题。 Lin-Kernighan-Helsgaun(LKH)算法是TSP的最先进的本地搜索算法之一,LKH-3是LKH的强大扩展,可以解决许多TSP变体。 LKH和LKH-3都将一个候选人与每个城市相关联,以提高算法效率,并具有两种不同的方法,称为$ \ alpha $ - 计算和Popmusic,以决定候选人集。在这项工作中,我们首先提出了一种可变策略加强LKH(VSR-LKH)算法,该算法将三种强化学习方法(Q-Learning,SARSA和Monte Carlo)与LKH算法结合在一起,以解决TSP。我们进一步提出了一种称为VSR-LKH-3的新算法,该算法将可变策略强化学习方法与LKH-3结合在一起,用于典型的TSP变体,包括带有时间窗口(TSPTW)和彩色TSP(CTSP)的TSP。所提出的算法取代了LKH和LKH-3中的不灵活的遍历操作,并让算法学会通过增强学习在每个搜索步骤中做出选择。 LKH和LKH-3都具有$ \ alpha $量或Popmusic方法,我们的方法都可以显着改善。具体而言,对236个公共和广泛使用的TSP基准的经验结果具有多达85,900个城市,证明了VSR-LKH的出色表现,扩展的VSR-LKH-3也显着超过了TSPTW和TSPTW和TSPTW和TSPTW的最新启发式方法CTSP。
translated by 谷歌翻译
组合优化的神经方法(CO)配备了一种学习机制,以发现解决复杂现实世界问题的强大启发式方法。尽管出现了能够在单一镜头中使用高质量解决方案的神经方法,但最先进的方法通常无法充分利用他们可用的解决时间。相比之下,手工制作的启发式方法可以很好地执行高效的搜索并利用给他们的计算时间,但包含启发式方法,这些启发式方法很难适应要解决的数据集。为了为神经CO方法提供强大的搜索程序,我们提出了模拟引导的光束搜索(SGB),该搜索(SGB)在固定宽度的树搜索中检查了候选解决方案,既是神经网络学习的政策又是模拟(推出)确定有希望的。我们将SGB与有效的主动搜索(EAS)进一步融合,其中SGB提高了EAS中反向传播的解决方案的质量,EAS提高了SGB中使用的策略的质量。我们评估了有关众所周知的CO基准的方法,并表明SGB可显着提高在合理的运行时假设下发现的解决方案的质量。
translated by 谷歌翻译
解决组合优化(CO)问题的传统求解器通常是由人类专家设计的。最近,人们对利用深度学习,尤其是深度强化学习的兴趣激增,自动为CO学习有效的求解器。由此产生的新范式称为神经组合优化(NCO)。但是,在经验或理论上,NCO的优势和缺点与其他方法的优势尚未得到很好的研究。在这项工作中,我们介绍了NCO求解器和替代求解器的全面比较研究。具体而言,将旅行推销员问题作为测试床问题,我们根据五个方面(即有效性,效率,稳定性,可扩展性和概括能力)评估求解器的性能。我们的结果表明,通常,NCO方法学到的求解器几乎在所有这些方面仍然没有传统求解器。前者的潜在好处将是在有足够的培训实例时,他们在小规模的问题实例上的卓越时间和能源效率。我们希望这项工作将有助于更好地理解NCO的优势和劣势,并提供全面的评估协议,以进一步对NCO进行针对其他方法的基准测试。
translated by 谷歌翻译
排名汇总旨在将许多替代品的偏好排名与不同选民的偏替排名组合成单一共识排名。然而,作为各种实际应用的有用模型,它是一个计算上有挑战性的问题。在本文中,我们提出了一种有效的混合进化排名算法来解决完整和部分排名的排名聚集问题。该算法具有基于协调对的语义交叉,并通过有效的增量评估技术加强了较晚的验收本地搜索。进行实验以评估算法,与最先进的算法相比,表明基准实例上具有高度竞争性能。为了展示其实际有用性,算法应用于标签排名,这是一个重要的机器学习任务。
translated by 谷歌翻译
Partial MaxSAT (PMS) and Weighted PMS (WPMS) are two practical generalizations of the MaxSAT problem. In this paper, we propose a local search algorithm for these problems, called BandHS, which applies two multi-armed bandits to guide the search directions when escaping local optima. One bandit is combined with all the soft clauses to help the algorithm select to satisfy appropriate soft clauses, and the other bandit with all the literals in hard clauses to help the algorithm select appropriate literals to satisfy the hard clauses. These two bandits can improve the algorithm's search ability in both feasible and infeasible solution spaces. We further propose an initialization method for (W)PMS that prioritizes both unit and binary clauses when producing the initial solutions. Extensive experiments demonstrate the excellent performance and generalization capability of our proposed methods, that greatly boost the state-of-the-art local search algorithm, SATLike3.0, and the state-of-the-art SAT-based incomplete solver, NuWLS-c.
translated by 谷歌翻译
The design of good heuristics or approximation algorithms for NP-hard combinatorial optimization problems often requires significant specialized knowledge and trial-and-error. Can we automate this challenging, tedious process, and learn the algorithms instead? In many real-world applications, it is typically the case that the same optimization problem is solved again and again on a regular basis, maintaining the same problem structure but differing in the data. This provides an opportunity for learning heuristic algorithms that exploit the structure of such recurring problems. In this paper, we propose a unique combination of reinforcement learning and graph embedding to address this challenge. The learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution, and the action is determined by the output of a graph embedding network capturing the current state of the solution. We show that our framework can be applied to a diverse range of optimization problems over graphs, and learns effective algorithms for the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.
translated by 谷歌翻译
作为旅行维修人员的延伸,利润的问题,利润的多个旅行修理员问题包括多个维修门,他们访问所有客户的子集,以最大限度地通过访问客户收集的收入。为了解决这一具有挑战性的问题,提出了一种基于麦克算法框架的有效的混合搜索算法。它集成了两个杰出的特征:基于专用的基于弧形的交叉来产生高质量的后代解决方案和快速评估技术,以降低探索经典社区的复杂性。我们在470个基准实例上显示了算法与前导参考算法相比的竞争力,并为其他330个实例报告了137个实例的新的最佳记录以及相同的最佳结果。我们调查了算法的关键搜索组件的重要性。
translated by 谷歌翻译
我们解决了部分MaxSat(PMS)和加权PMS(WPM),这是MaxSat问题的两个实际概括,并为这些问题(称为BandMaxSat)提出了一种局部搜索算法,该算法应用了多臂Bantit模型来指导搜索方向。我们方法中的匪徒与输入(w)pms实例中的所有软子句相关联。每个手臂对应于软子句。 Bandit模型可以通过选择要在当前步骤中满足的软子句,即选择要拉的臂来帮助BandmaxSat选择一个良好的方向以逃脱本地Optima。我们进一步提出了一种初始化方法(w)PMS,在生产初始解决方案时优先考虑单元和二进制条款。广泛的实验表明,BandMaxSat显着优于最先进的(W)PMS本地搜索算法SATLIKE3.0。具体而言,BandMaxSat获得更好结果的实例数量大约是Satlike3.0获得的两倍。此外,我们将bandmaxsat与完整的求解器tt-open-wbo-inc相结合。最终的求解器bandmaxsat-c还胜过一些最好的最新完整(W)PMS求解器,包括satlike-c,loandra和tt-open-wbo-inc。
translated by 谷歌翻译
Steiner树问题(STP)在图中旨在在连接给定的顶点集的图表中找到一个最小权重的树。它是一种经典的NP - 硬组合优化问题,具有许多现实世界应用(例如,VLSI芯片设计,运输网络规划和无线传感器网络)。为STP开发了许多精确和近似算法,但它们分别遭受高计算复杂性和弱案例解决方案保证。还开发了启发式算法。但是,它们中的每一个都需要应用域知识来设计,并且仅适用于特定方案。最近报道的观察结果,同一NP-COLLECLIAL问题的情况可能保持相同或相似的组合结构,但主要在其数据中不同,我们调查将机器学习技术应用于STP的可行性和益处。为此,我们基于新型图形神经网络和深增强学习设计了一种新型模型瓦坎。 Vulcan的核心是一种新颖的紧凑型图形嵌入,将高瞻度图形结构数据(即路径改变信息)转换为低维矢量表示。鉴于STP实例,Vulcan使用此嵌入来对其路径相关的信息进行编码,并基于双层Q网络(DDQN)将编码的图形发送到深度加强学习组件,以找到解决方案。除了STP之外,Vulcan还可以通过将解决方案(例如,SAT,MVC和X3C)来减少到STP来找到解决方案。我们使用现实世界和合成数据集进行广泛的实验,展示了vulcan的原型,并展示了它的功效和效率。
translated by 谷歌翻译
在本文中,我们提出了一个两阶段优化策略,用于解决名为CCPNRL-GA的大规模旅行推销员问题(LSTSP)。首先,我们假设一个表现出色的人作为精英的参与可以加速优化的收敛性。基于这一假设,在第一阶段,我们将城市聚集并将LSTSP分解为多个子组件,并使用可重复使用的指针网络(PTRNET)优化每个子组件。在亚组件优化之后,我们将所有子巡回仪组合在一起以形成有效的解决方案,该解决方案将与GA的第二阶段相连。我们验证了我们对10个LSTSP的建议的绩效,并将其与传统EAS进行比较。实验结果表明,精英个人的参与可以极大地加速LSTSP的优化,而我们的建议在处理LSTSP方面具有广泛的前景。
translated by 谷歌翻译
大约400年前的国际象棋游戏始于大约400年前的统治图,这引发了对统治图的分析,最初是相对松散的,直到1960年代开始,当时该问题给出了数学描述。这是图理论中最重要的问题之一,也是在多项式时间无法解决的NP完整问题。结果,我们描述了一种新的混合杜鹃搜索技术,以解决这项工作中的MDS问题。杜鹃搜索是一种著名的元神经,其能力探索了巨大的搜索空间,使其对多元化有用。但是,为了提高性能,我们除了遗传跨界操作员外,还将强化技术纳入了建议的方法。在详尽的实验测试中介绍了我们的方法与文献中相应的最新技术的比较。根据获得的结果,建议的算法优于当前的最新状态。
translated by 谷歌翻译
本文介绍了一种增强的元启发式(ML-ACO),将机器学习(ML)和蚁群优化(ACO)结合起来解决组合优化问题。为了说明我们ML-ACO算法的底层机制,我们首先描述测试问题,定向问题。在这个问题中,目的是找到一个路线,该路线在时间预算中在图中访问顶点的子集,以最大化收集的分数。在我们ML-ACO算法的第一阶段,使用一组小问题实例训练ML模型,其中已知最佳解决方案。具体地,分类模型用于将边缘分类为最佳路由的一部分,或不使用特定于问题的特征和统计测量。然后,训练模型用于预测测试问题实例图表中的边缘所属的概率属于相应的最优路由。在第二阶段,我们将预测的概率纳入我们算法的ACO组件,即,使用概率值作为启发式权重或者热启动信息素矩阵。这里,在构建可行的路线时偏向有利于这些预测的高质量边缘的概率值。我们已经测试了多种分类模型,包括图形神经网络,逻辑回归和支持向量机,实验结果表明,我们的解决方案预测方法一直促进ACO的性能。此外,我们经验证明我们在小型合成实例上培训的ML模型概括为大型合成和现实世界的情况。我们将ML与META-HEURISTIC集成的方法是通用的,可以应用于各种优化问题。
translated by 谷歌翻译
最近的研究表明,神经组合优化(NCO)在许多组合优化问题(如路由)中具有优于传统算法的优点,但是对于涉及相互条件的动作空间的包装,诸如打包的更加复杂的优化任务的效率较低。在本文中,我们提出了一种经常性的条件查询学习(RCQL)方法来解决2D和3D包装问题。我们首先通过经常性编码器嵌入状态,然后采用先前操作的条件查询注意。条件查询机制填充了学习步骤之间的信息差距,将问题塑造为Markov决策过程。从复发中受益,单个RCQL模型能够处理不同尺寸的包装问题。实验结果表明,RCQL可以有效地学习用于离线和在线条带包装问题(SPP)的强烈启发式,优于空间利用率范围广泛的基线。 RCQL与最先进的方法相比,在离线2D 40盒案例中将平均箱间隙比率降低1.83%,3.84%。同时,我们的方法还实现了5.64%的空间利用率,对于1000件物品的空间利用率比现有技术更高。
translated by 谷歌翻译
在过去的几十年中,经典的车辆路由问题(VRP),即为车辆分配一组订单并规划他们的路线已经被密集研究。仅作为车辆的订单分配和他们的路线已经是一个NP完整的问题,因此在实践中的应用通常无法考虑在现实世界应用中应用的约束和限制,所谓的富VRP所谓的富VRP(RVRP)并且仅限于单一方面。在这项工作中,我们融入了主要的相关真实限制和要求。我们提出了一种两级策略和时间线窗口和暂停时间的时间线算法,并将遗传算法(GA)和蚁群优化(ACO)单独应用于问题以找到最佳解决方案。我们对四种不同问题实例的评估,针对四个最先进的算法表明,我们的方法在合理的时间内处理所有给定的约束。
translated by 谷歌翻译
柱生成(CG)是解决大规模优化问题的有效方法。CG通过求解列(即变量)的子集并逐渐包括可以改善当前子问题的解决方案的新列。通过反复解决定价问题,根据需要产生新列,这通常是NP - 硬的并且是CG方法的瓶颈。为了解决这个问题,我们提出了一种基于机器学习的定价启发式(MLPH),可以有效地产生许多高质量的柱。在CG的每次迭代中,我们的MLPH利用ML模型来预测定价问题的最佳解决方案,然后用于引导采样方法以有效地产生多个高质量柱。使用图形着色问题,我们经验证明,与六种最先进的方法相比,MLPH显着增强,并且CG的改善可能导致分支和价格精确方法的显着更好的性能。
translated by 谷歌翻译
In recent years, methods based on deep neural networks, and especially Neural Improvement (NI) models, have led to a revolution in the field of combinatorial optimization. Given an instance of a graph-based problem and a candidate solution, they are able to propose a modification rule that improves its quality. However, existing NI approaches only consider node features and node-wise positional encodings to extract the instance and solution information, respectively. Thus, they are not suitable for problems where the essential information is encoded in the edges. In this paper, we present a NI model to solve graph-based problems where the information is stored either in the nodes, in the edges, or in both of them. We incorporate the NI model as a building block of hill-climbing-based algorithms to efficiently guide the election of neighborhood operations considering the solution at that iteration. Conducted experiments show that the model is able to recommend neighborhood operations that are in the $99^{th}$ percentile for the Preference Ranking Problem. Moreover, when incorporated to hill-climbing algorithms, such as Iterated or Multi-start Local Search, the NI model systematically outperforms the conventional versions. Finally, we demonstrate the flexibility of the model by extending the application to two well-known problems: the Traveling Salesman Problem and the Graph Partitioning Problem.
translated by 谷歌翻译
电磁检测卫星调度问题(EDSSP)的研究引起了人们对大量目标的检测要求的关注。本文提出了一个针对EDSSP问题的混合成员编程模型,以及基于强化学习(RL-EA)的进化算法框架。在模型中考虑了影响电磁检测的许多因素,例如检测模式,带宽和其他因素。基于强化学习的进化算法框架使用Q学习框架,并且人群中的每个人都被视为代理。根据提出的框架,设计了一种基于Q的遗传算法(QGA)。 Q学习用于通过选择变异操作员来指导人口搜索过程。在算法中,我们设计了一个奖励功能来更新Q值。根据问题的特征,提出了一种新的组合,采取了行动>。 QGA还使用精英个人保留策略来提高搜索性能。之后,提出了一个任务时间窗口选择算法来评估人口进化的性能。各种量表实验用于检查所提出算法的计划效果。通过对多个实例的实验验证,可以看出QGA可以有效地解决EDSSP问题。与最新的算法相比,QGA算法在几个方面的表现更好。
translated by 谷歌翻译
路由问题是许多实际应用的一类组合问题。最近,已经提出了端到端的深度学习方法,以了解这些问题的近似解决方案启发式。相比之下,经典动态编程(DP)算法保证最佳解决方案,但与问题大小严重规模。我们提出了深入的政策动态规划(DPDP),旨在将学习神经启发式的优势与DP算法结合起来。 DPDP优先确定并限制DP状态空间,使用来自深度神经网络的策略进行培训,以预测示例解决方案的边缘。我们在旅行推销员问题(TSP)上评估我们的框架,车辆路由问题(VRP)和TSP与时间窗口(TSPTW),并表明神经政策提高了(限制性)DP算法的性能,使其对强有力的替代品具有竞争力如LKH,同时也优于求解TSP,VRP和TSPTWS的大多数其他“神经方法”,其中包含100个节点。
translated by 谷歌翻译
In the last years, there has been a great interest in machine-learning-based heuristics for solving NP-hard combinatorial optimization problems. The developed methods have shown potential on many optimization problems. In this paper, we present a learned heuristic for the reoptimization of a problem after a minor change in its data. We focus on the case of the capacited vehicle routing problem with static clients (i.e., same client locations) and changed demands. Given the edges of an original solution, the goal is to predict and fix the ones that have a high chance of remaining in an optimal solution after a change of client demands. This partial prediction of the solution reduces the complexity of the problem and speeds up its resolution, while yielding a good quality solution. The proposed approach resulted in solutions with an optimality gap ranging from 0\% to 1.7\% on different benchmark instances within a reasonable computing time.
translated by 谷歌翻译