图神经网络(GNN)已成为与图形和类似拓扑数据结构有关的无数任务的骨干。尽管已经在与节点和图形分类/回归任务有关的域中建立了许多作品,但它们主要处理单个任务。在图形上的持续学习在很大程度上没有探索,现有的图形持续学习方法仅限于任务的学习方案。本文提出了一个持续学习策略,该策略结合了基于架构和基于内存的方法。结构学习策略是由强化学习驱动的,在该学习中,对控制器网络进行了这种方式,以确定观察到新任务时从基本网络中添加/修剪的最佳节点,从而确保足够的网络能力。参数学习策略的基础是黑暗体验重播方法的概念,以应对灾难性的遗忘问题。我们的方法在任务收入学习和课堂学习设置中都通过几个图的连续学习基准问题进行了数值验证。与最近发表的作品相比,我们的方法在这两种设置中都表明了性能的提高。可以在\ url {https://github.com/codexhammer/gcl}上找到实现代码。
translated by 谷歌翻译
Graph learning is a popular approach for performing machine learning on graph-structured data. It has revolutionized the machine learning ability to model graph data to address downstream tasks. Its application is wide due to the availability of graph data ranging from all types of networks to information systems. Most graph learning methods assume that the graph is static and its complete structure is known during training. This limits their applicability since they cannot be applied to problems where the underlying graph grows over time and/or new tasks emerge incrementally. Such applications require a lifelong learning approach that can learn the graph continuously and accommodate new information whilst retaining previously learned knowledge. Lifelong learning methods that enable continuous learning in regular domains like images and text cannot be directly applied to continuously evolving graph data, due to its irregular structure. As a result, graph lifelong learning is gaining attention from the research community. This survey paper provides a comprehensive overview of recent advancements in graph lifelong learning, including the categorization of existing methods, and the discussions of potential applications and open research problems.
translated by 谷歌翻译
尽管图表表现学习有重大进展,但很少关注更实用的持续学习场景,其中新类节点(例如,引文网络中的新研究领域或共同购买网络中的新型产品)及其相关的节点及其相关的边缘持续出现,导致以前的类别造成灾难性的遗忘。现有方法忽略丰富的拓扑信息或牺牲稳定性的可塑性。为此,我们呈现分层原型网络(HPN),其以原型的形式提取不同级别的抽象知识,以表示连续扩展的图形。具体地,我们首先利用一组原子特征提取器(AUE)来编码元素属性信息和目标节点的拓扑结构。接下来,我们开发HPN以自适应地选择相关的余处,并表示具有三个级别的原型的每个节点。以这种方式,每当给出新的节点类别时,只有每个级别的相关的原件和原型都将被激活和精制,而另一些级别仍然不间断以保持对现有节点的性能。从理论上讲,我们首先表明HPN的内存消耗无论遇到多少任务如何。然后,我们证明在温和的约束下,学习新任务不会改变与先前数据匹配的原型,从而消除了遗忘问题。通过五个数据集的实验支持理论结果,表明HPN不仅优于最先进的基线技术,而且还消耗了相对较少的内存。
translated by 谷歌翻译
逐步学习新课程的能力对于所有现实世界的人工智能系统至关重要。像社交媒体,推荐系统,电子商务平台等的大部分高冲击应用都可以由图形模型表示。在本文中,我们调查了挑战但实际问题,图表几次拍摄的类增量(图形FCL)问题,其中图形模型是任务,以对新遇到的类和以前学习的类进行分类。为此目的,我们通过从基类循环地采样任务来提出图形伪增量学习范例,以便为我们的模型产生任意数量的培训集,以练习增量学习技能。此外,我们设计了一种基于分层的图形元学习框架,Hag-Meta。我们介绍了一个任务敏感的常规程序,从任务级关注和节点类原型计算,以缓解到新颖或基本类上的过度拟合。为了采用拓扑知识,我们添加了一个节点级注意模块来调整原型表示。我们的模型不仅达到了旧知识整合的更大稳定性,而且还可以获得对具有非常有限的数据样本的新知识的有利适应性。在三个现实世界数据集上进行广泛的实验,包括亚马逊服装,Reddit和DBLP,表明我们的框架与基线和其他相关最先进的方法相比,展示了显着的优势。
translated by 谷歌翻译
持续学习旨在通过以在线学习方式利用过去获得的知识,同时能够在所有以前的任务上表现良好,从而学习一系列任务,这对人工智能(AI)系统至关重要,因此持续学习与传统学习模式相比,更适合大多数现实和复杂的应用方案。但是,当前的模型通常在每个任务上的类标签上学习一个通用表示基础,并选择有效的策略来避免灾难性的遗忘。我们假设,仅从获得的知识中选择相关且有用的零件比利用整个知识更有效。基于这一事实,在本文中,我们提出了一个新框架,名为“选择相关的在线持续学习知识(SRKOCL),该框架结合了一种额外的有效频道注意机制,以选择每个任务的特定相关知识。我们的模型还结合了经验重播和知识蒸馏,以避免灾难性的遗忘。最后,在不同的基准上进行了广泛的实验,竞争性实验结果表明,我们提出的SRKOCL是针对最先进的承诺方法。
translated by 谷歌翻译
对抗性持续学习对于持续学习问题有效,因为存在特征对齐过程,从而产生了对灾难性遗忘问题敏感性低的任务不变特征。然而,ACL方法施加了相当大的复杂性,因为它依赖于特定于任务的网络和歧视器。它还经历了一个迭代培训过程,该过程不适合在线(单周)持续学习问题。本文提出了一种可扩展的对抗性持续学习(比例)方法,提出了一个参数生成器,将共同特征转换为特定于任务的功能,并在对抗性游戏中进行单个歧视器,以诱导共同的特征。训练过程是在元学习时尚中使用三个损失功能组合进行的。缩放比例优于明显的基线,其准确性和执行时间都明显。
translated by 谷歌翻译
持续学习旨在快速,不断地从一系列任务中学习当前的任务。与其他类型的方法相比,基于经验重播的方法表现出了极大的优势来克服灾难性的遗忘。该方法的一个常见局限性是上一个任务和当前任务之间的数据不平衡,这将进一步加剧遗忘。此外,如何在这种情况下有效解决稳定性困境也是一个紧迫的问题。在本文中,我们通过提出一个通过多尺度知识蒸馏和数据扩展(MMKDDA)提出一个名为Meta学习更新的新框架来克服这些挑战。具体而言,我们应用多尺度知识蒸馏来掌握不同特征级别的远程和短期空间关系的演变,以减轻数据不平衡问题。此外,我们的方法在在线持续训练程序中混合了来自情节记忆和当前任务的样品,从而减轻了由于概率分布的变化而减轻了侧面影响。此外,我们通过元学习更新来优化我们的模型,该更新诉诸于前面所看到的任务数量,这有助于保持稳定性和可塑性之间的更好平衡。最后,我们对四个基准数据集的实验评估显示了提出的MMKDDA框架对其他流行基线的有效性,并且还进行了消融研究,以进一步分析每个组件在我们的框架中的作用。
translated by 谷歌翻译
人类在整个生命周期中不断学习,通过积累多样化的知识并为未来的任务进行微调。当出现类似目标时,神经网络会遭受灾难性忘记,在学习过程中跨顺序任务跨好任务的数据分布是否不固定。解决此类持续学习(CL)问题的有效方法是使用超网络为目标网络生成任务依赖权重。但是,现有基于超网的方法的持续学习性能受到整个层之间权重的独立性的假设,以维持参数效率。为了解决这一限制,我们提出了一种新颖的方法,该方法使用依赖关系保留超网络来为目标网络生成权重,同时还保持参数效率。我们建议使用基于复发的神经网络(RNN)的超网络,该网络可以有效地生成层权重,同时允许在它们的依赖关系中。此外,我们为基于RNN的超网络提出了新颖的正则化和网络增长技术,以进一步提高持续的学习绩效。为了证明所提出的方法的有效性,我们对几个图像分类持续学习任务和设置进行了实验。我们发现,基于RNN HyperNetworks的建议方法在所有这些CL设置和任务中都优于基准。
translated by 谷歌翻译
增量任务学习(ITL)是一个持续学习的类别,试图培训单个网络以进行多个任务(一个接一个),其中每个任务的培训数据仅在培训该任务期间可用。当神经网络接受较新的任务培训时,往往会忘记旧任务。该特性通常被称为灾难性遗忘。为了解决此问题,ITL方法使用情节内存,参数正则化,掩盖和修剪或可扩展的网络结构。在本文中,我们提出了一个基于低级别分解的新的增量任务学习框架。特别是,我们表示每一层的网络权重作为几个等级1矩阵的线性组合。为了更新新任务的网络,我们学习一个排名1(或低级别)矩阵,并将其添加到每一层的权重。我们还引入了一个其他选择器向量,该向量将不同的权重分配给对先前任务的低级矩阵。我们表明,就准确性和遗忘而言,我们的方法的表现比当前的最新方法更好。与基于情节的内存和基于面具的方法相比,我们的方法还提供了更好的内存效率。我们的代码将在https://github.com/csiplab/task-increment-rank-update.git上找到。
translated by 谷歌翻译
知识蒸馏(KD)证明了其有效性,可以提高图形神经网络(GNN)的性能,其目标是将知识从更深的教师gnn蒸馏成较浅的学生GNN。但是,由于众所周知的过度参数和过度光滑的问题,实际上很难培训令人满意的教师GNN,从而导致实际应用中的知识转移无效。在本文中,我们通过对GNN的加强学习(称为FreeKD)提出了第一个自由方向知识蒸馏框架,而这不再需要提供更深入的良好优化的教师GNN。我们工作的核心思想是协作建立两个较浅的GNN,以通过以层次结构方式通过加强学习来交流知识。正如我们观察到的一个典型的GNN模型在训练过程中通常在不同节点的表现更好,更差的表现,我们设计了一种动态和自由方向的知识转移策略,该策略由两个级别的动作组成:1)节点级别的动作决定了知识的方向。两个网络的相应节点之间的传输;然后2)结构级的动作确定了要传播的节点级别生成的局部结构。从本质上讲,我们的FreeKD是一个一般且原则性的框架,可以自然与不同架构的GNN兼容。在五个基准数据集上进行的广泛实验表明,我们的FreeKD在很大的边距上优于两个基本GNN,并显示了其对各种GNN的功效。更令人惊讶的是,我们的FreeKD比传统的KD算法具有可比性甚至更好的性能,这些KD算法将知识从更深,更强大的教师GNN中提取。
translated by 谷歌翻译
图形神经网络(GNNS)是许多图形结构任务的强大模型。现有模型通常假设在培训期间可以使用图形的完整结构。然而,在实践中,图形结构数据通常以流式方式形成,使得通常需要学习图形。在本文中,我们的目标是通过将图形问题转换为常规学习问题来桥接GNN到终身学习,因此GNN可以继承为卷积神经网络(CNNS)开发的终身学习技术。为此,我们提出了一种基于特征互相关的新图形拓扑,即特征图。它将功能作为新节点并将节点转换为独立图形。这成功将节点分类的原始问题转换为图形分类,其中增加的节点变成了独立的训练样本。在实验中,我们通过连续学习一系列经典图形数据集来展示特征图网络(FGN)的效率和有效性。我们还表明,FGN在两种应用中实现了卓越的性能,即终身的人类行动识别,具有可穿戴设备和功能匹配。据我们所知,FGN是第一个通过新颖的图形拓扑桥接图表学习终身学习的工作。源代码可用于\ url {https:/github.com/wang-chen/lgl}。
translated by 谷歌翻译
混合整数程序(MIP)通常通过分支结合算法解决。最近,学会模仿专家强的分支启发式的快速近似,由于它成功地减少了解决MIP的运行时间,因此引起了人们的关注。但是,现有的学习与分支方法假设整个培训数据都可以在一次培训中获得。这个假设通常不正确,如果随着时间的推移以连续的方式提供培训数据,现有技术会遭受灾难性遗忘。在这项工作中,我们研究了迄今未开发的终身学习范式,以在混合整数程序上分支。为了减轻灾难性的遗忘,我们提出了Limip,该limip是由以两部分图的形式对MIP实例进行建模的想法,我们使用双方图形注意力网络将其映射到嵌入式空间。这种丰富的嵌入空间避免了通过应用知识蒸馏和弹性重量巩固的灾难性遗忘,其中我们学习参数的关键是保持疗效,因此受到保护,免受明显的漂移。我们评估了一系列NP硬性问题的利润,并确定与现有基线相比,在面对终身学习时,Limip的速度高达50%。
translated by 谷歌翻译
持续学习(CL)旨在开发单一模型适应越来越多的任务的技术,从而潜在地利用跨任务的学习以资源有效的方式。 CL系统的主要挑战是灾难性的遗忘,在学习新任务时忘记了早期的任务。为了解决此问题,基于重播的CL方法在遇到遇到任务中选择的小缓冲区中维护和重复培训。我们提出梯度Coreset重放(GCR),一种新颖的重播缓冲区选择和使用仔细设计的优化标准的更新策略。具体而言,我们选择并维护一个“Coreset”,其与迄今为止关于当前模型参数的所有数据的梯度紧密近似,并讨论其有效应用于持续学习设置所需的关键策略。在学习的离线持续学习环境中,我们在最先进的最先进的最先进的持续学习环境中表现出显着的收益(2%-4%)。我们的调查结果还有效地转移到在线/流媒体CL设置,从而显示现有方法的5%。最后,我们展示了持续学习的监督对比损失的价值,当与我们的子集选择策略相结合时,累计增益高达5%。
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
社交机器人被称为社交网络上的自动帐户,这些帐户试图像人类一样行事。尽管图形神经网络(GNNS)已大量应用于社会机器人检测领域,但大量的领域专业知识和先验知识大量参与了最先进的方法,以设计专门的神经网络体系结构,以设计特定的神经网络体系结构。分类任务。但是,在模型设计中涉及超大的节点和网络层,通常会导致过度平滑的问题和缺乏嵌入歧视。在本文中,我们提出了罗斯加斯(Rosgas),这是一种新颖的加强和自我监督的GNN Architecture搜索框架,以适应性地指出了最合适的多跳跃社区和GNN体系结构中的层数。更具体地说,我们将社交机器人检测问题视为以用户为中心的子图嵌入和分类任务。我们利用异构信息网络来通过利用帐户元数据,关系,行为特征和内容功能来展示用户连接。 Rosgas使用多代理的深钢筋学习(RL)机制来导航最佳邻域和网络层的搜索,以分别学习每个目标用户的子图嵌入。开发了一种用于加速RL训练过程的最接近的邻居机制,Rosgas可以借助自我监督的学习来学习更多的判别子图。 5个Twitter数据集的实验表明,Rosgas在准确性,训练效率和稳定性方面优于最先进的方法,并且在处理看不见的样本时具有更好的概括。
translated by 谷歌翻译
We motivate Energy-Based Models (EBMs) as a promising model class for continual learning problems. Instead of tackling continual learning via the use of external memory, growing models, or regularization, EBMs change the underlying training objective to cause less interference with previously learned information. Our proposed version of EBMs for continual learning is simple, efficient, and outperforms baseline methods by a large margin on several benchmarks. Moreover, our proposed contrastive divergence-based training objective can be combined with other continual learning methods, resulting in substantial boosts in their performance. We further show that EBMs are adaptable to a more general continual learning setting where the data distribution changes without the notion of explicitly delineated tasks. These observations point towards EBMs as a useful building block for future continual learning methods.
translated by 谷歌翻译
灾难性的遗忘是阻碍在持续学习环境中部署深度学习算法的一个重大问题。已经提出了许多方法来解决灾难性的遗忘问题,在学习新任务时,代理商在旧任务中失去了其旧任务的概括能力。我们提出了一项替代策略,可以通过知识合并(CFA)处理灾难性遗忘,该策略从多个专门从事以前任务的多个异构教师模型中学习了学生网络,并可以应用于当前的离线方法。知识融合过程以单头方式进行,只有选定数量的记忆样本,没有注释。教师和学生不需要共享相同的网络结构,可以使异质任务适应紧凑或稀疏的数据表示。我们将我们的方法与不同策略的竞争基线进行比较,证明了我们的方法的优势。
translated by 谷歌翻译
恶意软件(恶意软件)分类为持续学习(CL)制度提供了独特的挑战,这是由于每天收到的新样本的数量以及恶意软件的发展以利用新漏洞。在典型的一天中,防病毒供应商将获得数十万个独特的软件,包括恶意和良性,并且在恶意软件分类器的一生中,有超过十亿个样品很容易积累。鉴于问题的规模,使用持续学习技术的顺序培训可以在减少培训和存储开销方面提供可观的好处。但是,迄今为止,还没有对CL应用于恶意软件分类任务的探索。在本文中,我们研究了11种应用于三个恶意软件任务的CL技术,涵盖了常见的增量学习方案,包括任务,类和域增量学习(IL)。具体而言,使用两个现实的大规模恶意软件数据集,我们评估了CL方法在二进制恶意软件分类(domain-il)和多类恶意软件家庭分类(Task-IL和类IL)任务上的性能。令我们惊讶的是,在几乎所有情况下,持续的学习方法显着不足以使训练数据的幼稚关节重播 - 在某些情况下,将精度降低了70个百分点以上。与关节重播相比,有选择性重播20%的存储数据的一种简单方法可以实现更好的性能,占训练时间的50%。最后,我们讨论了CL技术表现出乎意料差的潜在原因,希望它激发进一步研究在恶意软件分类域中更有效的技术。
translated by 谷歌翻译
持续学习需要模型来学习新任务,同时保持先前学识到的知识。已经提出了各种算法来解决这一真正的挑战。到目前为止,基于排练的方法,例如经验重播,取得了最先进的性能。这些方法将过去任务的一小部分保存为内存缓冲区,以防止模型忘记以前学识的知识。但是,它们中的大多数情况都同样对待每一个新任务,即,在学习不同的新任务时修复了框架的超级参数。这样的设置缺乏对过去和新任务之间的关系/相似性的考虑。例如,与从公共汽车中学到的人相比,从狗的知识/特征比识别猫(新任务)更有益。在这方面,我们提出了一种基于BI级优化的元学习算法,以便自适应地调整从过去和新任务中提取的知识之间的关系。因此,该模型可以在持续学习期间找到适当的梯度方向,避免在内存缓冲区上的严重过度拟合问题。广泛的实验是在三个公开的数据集(即CiFar-10,CiFar-100和微小想象网)上进行的。实验结果表明,该方法可以一致地改善所有基线的性能。
translated by 谷歌翻译
学术界和工业广泛研究了图形机器学习。然而,作为图表学习繁荣的文献,具有大量的新兴方法和技术,它越来越难以手动设计用于不同的图形相关任务的最佳机器学习算法。为了解决挑战,自动化图形机器学习,目的是在没有手动设计的不同图表任务/数据中发现最好的图形任务/数据的最佳超参数和神经架构配置,正在增加研究界的越来越多的关注。在本文中,我们广泛地讨论了自动化图形机方法,涵盖了用于图形机学习的超参数优化(HPO)和神经架构搜索(NAS)。我们简要概述了专为Traph Machine学习或自动化机器学习而设计的现有库,进一步深入介绍AutoGL,我们的专用和世界上第一个用于自动图形机器学习的开放源库。最后但并非最不重要的是,我们分享了对自动图形机学习的未来研究方向的见解。本文是对自动图形机学习的方法,图书馆以及方向的第一个系统和全面讨论。
translated by 谷歌翻译