概率无论无内容语法(PCFG)和动态贝叶斯网络(DBNS)是广泛使用的序列模型,具有互补的优势和局限性。虽然PCFGS允许嵌套分层依赖关系(树结构),但它们的潜在变量(非终端符号)必须是离散的。相比之下,DBN允许持续潜在变量,但依赖关系是严格顺序(链结构)。因此,如果假设潜伏变量是连续的并且还具有嵌套的分层依赖结构,则也可以应用。在本文中,我们呈现递归贝叶斯网络(RBNS),它概括和统一PCFG和DBN,将其优势与特殊情况相结合。 RBN定义了具有离散或连续潜在变量的树结构贝叶斯网络上的联合分布。主要挑战在于在可能的结构和连续变量的指数数上执行关节推断。我们提供了两个解决方案:1)对于任意RBN,我们将内部和外部概率概括为混合离散连续的情况,这允许通过梯度下降到连续潜变量的最大后估计,同时通过网络结构边缘化。 2)对于高斯RBN,我们还导出了分析近似,允许鲁棒参数优化和贝叶斯推断。 RBN的容量和多样化应用在两个示例中示出:在综合数据的定量评估中,与改变点检测和分层聚类相比,我们证明并讨论了RBN对噪声序列的分割和树诱导的优势。在对音乐数据的应用中,我们接近原始注释级别的分层音乐分析的未解决问题,并将我们的结果与专家注释进行比较。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
这是机器学习中(主要是)笔和纸练习的集合。练习在以下主题上:线性代数,优化,定向图形模型,无向图形模型,图形模型的表达能力,因子图和消息传递,隐藏马尔可夫模型的推断,基于模型的学习(包括ICA和非正态模型),采样和蒙特卡洛整合以及变异推断。
translated by 谷歌翻译
已经引入了生成流量网络(GFlowNETS)作为在主动学习背景下采样多样化候选的方法,具有培训目标,其使它们与给定奖励功能成比例地进行比例。在本文中,我们显示了许多额外的GFLOWN的理论特性。它们可用于估计联合概率分布和一些变量未指定的相应边际分布,并且特别感兴趣地,可以代表像集合和图形的复合对象的分布。 Gflownets摊销了通常通过计算昂贵的MCMC方法在单个但训练有素的生成通行证中进行的工作。它们还可用于估计分区功能和自由能量,给定子集(子图)的超标(超图)的条件概率,以及给定集合(图)的所有超标仪(超图)的边际分布。我们引入了熵和相互信息估计的变体,从帕累托前沿采样,与奖励最大化策略的连接,以及随机环境的扩展,连续动作和模块化能量功能。
translated by 谷歌翻译
复杂的事件识别(CER)系统在过去二十年中变得流行,因为它们能够“立即”检测在实时事件流上的模式。然而,缺乏预测模式可能发生在例如由Cer发动机实际检测到这种发生之前的模式。我们提出了一项正式的框架,试图解决复杂事件预测(CEF)的问题。我们的框架结合了两个形式主义:a)用于编码复杂事件模式的符号自动机; b)预测后缀树,可以提供自动机构的行为的简洁概率描述。我们比较我们提出的方法,以防止最先进的方法,并在准确性和效率方面展示其优势。特别地,预测后缀树是可变的马尔可夫模型,可以通过仅记住足够的信息的过去序列来捕获流中的长期依赖性。我们的实验结果表明了能够捕获这种长期依赖性的准确性的益处。这是通过增加我们模型的顺序来实现的,以满足需要执行给定顺序的所有可能的过去序列的所有可能的过去序列的详尽枚举的全阶马尔可夫模型。我们还广泛讨论CEF解决方案如何最佳地评估其预测的质量。
translated by 谷歌翻译
This paper presents a tutorial introduction to the use of variational methods for inference and learning in graphical models (Bayesian networks and Markov random fields). We present a number of examples of graphical models, including the QMR-DT database, the sigmoid belief network, the Boltzmann machine, and several variants of hidden Markov models, in which it is infeasible to run exact inference algorithms. We then introduce variational methods, which exploit laws of large numbers to transform the original graphical model into a simplified graphical model in which inference is efficient. Inference in the simpified model provides bounds on probabilities of interest in the original model. We describe a general framework for generating variational transformations based on convex duality. Finally we return to the examples and demonstrate how variational algorithms can be formulated in each case.
translated by 谷歌翻译
回归模型用于各种应用,为来自不同领域的研究人员提供强大的科学工具。线性或简单的参数,模型通常不足以描述输入变量与响应之间的复杂关系。通过诸如神经网络的灵活方法可以更好地描述这种关系,但这导致不太可解释的模型和潜在的过度装备。或者,可以使用特定的参数非线性函数,但是这种功能的规范通常是复杂的。在本文中,我们介绍了一种灵活的施工方法,高度灵活的非线性参数回归模型。非线性特征是分层的,类似于深度学习,但对要考虑的可能类型的功能具有额外的灵活性。这种灵活性,与变量选择相结合,使我们能够找到一小部分重要特征,从而可以更具可解释的模型。在可能的功能的空间内,考虑了贝叶斯方法,基于它们的复杂性引入功能的前沿。采用遗传修改模式跳跃马尔可夫链蒙特卡罗算法来执行贝叶斯推理和估计模型平均的后验概率。在各种应用中,我们说明了我们的方法如何用于获得有意义的非线性模型。此外,我们将其预测性能与多个机器学习算法进行比较。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
贝叶斯结构学习允许从数据推断贝叶斯网络结构,同时推理认识性不确定性 - 朝着实现现实世界系统的主动因果发现和设计干预的关键因素。在这项工作中,我们为贝叶斯结构学习(DIBS)提出了一般,完全可微分的框架,其在潜在概率图表表示的连续空间中运行。与现有的工作相反,DIBS对局部条件分布的形式不可知,并且允许图形结构和条件分布参数的关节后部推理。这使得我们的配方直接适用于复杂贝叶斯网络模型的后部推理,例如,具有由神经网络编码的非线性依赖性。使用DIBS,我们设计了一种高效,通用的变分推理方法,用于近似结构模型的分布。在模拟和现实世界数据的评估中,我们的方法显着优于关节后部推理的相关方法。
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
Energy-Based Models (EBMs) capture dependencies between variables by associating a scalar energy to each configuration of the variables. Inference consists in clamping the value of observed variables and finding configurations of the remaining variables that minimize the energy. Learning consists in finding an energy function in which observed configurations of the variables are given lower energies than unobserved ones. The EBM approach provides a common theoretical framework for many learning models, including traditional discriminative and generative approaches, as well as graph-transformer networks, conditional random fields, maximum margin Markov networks, and several manifold learning methods.Probabilistic models must be properly normalized, which sometimes requires evaluating intractable integrals over the space of all possible variable configurations. Since EBMs have no requirement for proper normalization, this problem is naturally circumvented. EBMs can be viewed as a form of non-probabilistic factor graphs, and they provide considerably more flexibility in the design of architectures and training criteria than probabilistic approaches.
translated by 谷歌翻译
We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent an approximate posterior distribution and uses this for optimisation of a variational lower bound. We develop stochastic backpropagation -rules for gradient backpropagation through stochastic variables -and derive an algorithm that allows for joint optimisation of the parameters of both the generative and recognition models. We demonstrate on several real-world data sets that by using stochastic backpropagation and variational inference, we obtain models that are able to generate realistic samples of data, allow for accurate imputations of missing data, and provide a useful tool for high-dimensional data visualisation.
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译
贝叶斯网络是一种图形模型,用于编码感兴趣的变量之间的概率关系。当与统计技术结合使用时,图形模型对数据分析具有几个优点。一个,因为模型对所有变量中的依赖性进行编码,因此它易于处理缺少某些数据条目的情况。二,贝叶斯网络可以用于学习因果关系,因此可以用来获得关于问题域的理解并预测干预的后果。三,因为该模型具有因果和概率语义,因此是结合先前知识(通常出现因果形式)和数据的理想表示。四,贝叶斯网络与贝叶斯网络的统计方法提供了一种有效和原则的方法,可以避免数据过剩。在本文中,我们讨论了从先前知识构建贝叶斯网络的方法,总结了使用数据来改善这些模型的贝叶斯统计方法。关于后一项任务,我们描述了学习贝叶斯网络的参数和结构的方法,包括使用不完整数据学习的技术。此外,我们还联系了贝叶斯网络方法,以学习监督和无监督学习的技术。我们说明了使用真实案例研究的图形建模方法。
translated by 谷歌翻译
贝叶斯等级混合集群(BHMC)是一种有趣的模型,可提高传统的贝叶斯分层聚类方法。关于生成过程中的父级节点扩散,BHMC用分层Dirichlet过程混合模型(HDPMM)替换传统的高斯 - 高斯(G2G)内核。然而,BHMC的缺点在于它可以在更高级别(即,靠近根节点的那些)中获得比较高的节点方差。这可以解释为节点之间的分离,特别是较高级别的节点之间的分离可能是弱的。试图克服这一缺点,我们考虑最近的推论框架名为后续正规化,这有助于一种简单的方式对贝叶斯模型施加额外的限制来解决原始模型的一些弱点。因此,为了增强群集的分离,我们将后正则化应用于在层次结构的每个级别的节点上强加对节点上的最大边缘约束。在本文中,我们说明了框架如何与BHMC集成,并通过原始模型实现所需的改进。
translated by 谷歌翻译
在本文中,我们提出了一个参数化因素,该因子可以对随机变量之间存在线性依赖性的高斯网络进行推理。我们的因素表示有效地是对传统高斯参数化的概括,在这种情况下,协方差矩阵的正定限制已被放松。为此,我们得出了各种统计操作和结果(例如,随机变量的边缘化,乘法和仿射转换)将高斯因子的能力扩展到这些退化设置。通过使用此原则性因素定义,可以以几乎没有额外的计算成本来准确,自动适应退化。作为例证,我们将方法应用于一个代表性的示例,该示例涉及合作移动机器人的递归状态估计。
translated by 谷歌翻译
尽管对连续数据的归一流流进行了广泛的研究,但直到最近才探索了离散数据的流量。然而,这些先前的模型遭受了与连续流的局限性。最值得注意的是,由于离散函数的梯度不确定或零,因此不能直接优化基于流动的模型。先前的作品近似离散功能的伪级,但不能在基本层面上解决该问题。除此之外,与替代离散算法(例如决策树算法)相比,反向传播可能是计算繁重的。我们的方法旨在减轻计算负担,并通过基于决策树开发离散流程来消除对伪级的需求,这是基于有效的基于树的基于有效的树的方法进行分类和回归的离散数据。我们首先定义了树结构化置换(TSP),该置换量(TSP)紧凑地编码离散数据的排列,其中逆向易于计算;因此,我们可以有效地计算密度值并采样新数据。然后,我们提出了一种决策树算法来构建TSP,该TSP通过新标准在每个节点上学习树结构和排列。我们从经验上证明了我们在多个数据集上方法的可行性。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
引入了涉及高斯流程(GPS)的模型,以同时处理多个功能数据的多任务学习,聚类和预测。该过程充当了功能数据的基于模型的聚类方法,也是对新任务进行后续预测的学习步骤。该模型是将多任务GPS与常见平均过程的混合物实例化。得出了一种用于处理超参数的优化以及超构件对潜在变量和过程的估计的优化。我们建立了明确的公式,用于将平均过程和潜在聚类变量整合到预测分布中,这是两个方面的不确定性。该分布定义为集群特异性GP预测的混合物,在处理组结构数据时,可以增强性能。该模型处理观察的不规则网格,并提供了关于协方差结构的不同假设,用于在任务之间共享其他信息。聚类和预测任务上的性能将通过各种模拟方案和真实数据集进行评估。总体算法称为magmaclust,可公开作为R包。
translated by 谷歌翻译