对于头颈癌(HNC)患者管理,自动总肿瘤量(GTV)细分和准确的治疗前癌症复发预测对于协助医师设计个性化管理计划非常重要,这有可能改善治疗结果和治疗结果和HNC患者的生活质量。在本文中,我们基于HNC患者的组合预处理正电子发射断层扫描/计算机发射断层扫描(PET/CT)扫描,开发了一种自动原发性肿瘤(GTVP)和淋巴结(GTVN)分割方法。我们从分段的肿瘤体积中提取了放射素学特征,并构建了多模式肿瘤复发生存率(RFS)预测模型,该模型融合了预测由单独的CT放射线学,PET放射线学和临床模型融合在一起。我们进行了5倍的交叉验证,以训练和评估MICCAI 2022头和颈部肿瘤分割和结果预测挑战(Hecktor)数据集的方法。 GTVP和GTVN分割的测试队列的集合预测分别达到0.77和0.73,RFS预测的C-指数值为0.67。该代码公开可用(https://github.com/wangkaiwan/hecktor-2022-airt)。我们团队的名字叫艾特。
translated by 谷歌翻译
Outcome prediction is crucial for head and neck cancer patients as it can provide prognostic information for early treatment planning. Radiomics methods have been widely used for outcome prediction from medical images. However, these methods are limited by their reliance on intractable manual segmentation of tumor regions. Recently, deep learning methods have been proposed to perform end-to-end outcome prediction so as to remove the reliance on manual segmentation. Unfortunately, without segmentation masks, these methods will take the whole image as input, such that makes them difficult to focus on tumor regions and potentially unable to fully leverage the prognostic information within the tumor regions. In this study, we propose a radiomics-enhanced deep multi-task framework for outcome prediction from PET/CT images, in the context of HEad and neCK TumOR segmentation and outcome prediction challenge (HECKTOR 2022). In our framework, our novelty is to incorporate radiomics as an enhancement to our recently proposed Deep Multi-task Survival model (DeepMTS). The DeepMTS jointly learns to predict the survival risk scores of patients and the segmentation masks of tumor regions. Radiomics features are extracted from the predicted tumor regions and combined with the predicted survival risk scores for final outcome prediction, through which the prognostic information in tumor regions can be further leveraged. Our method achieved a C-index of 0.681 on the testing set, placing the 2nd on the leaderboard with only 0.00068 lower in C-index than the 1st place.
translated by 谷歌翻译
目的:基于深度学习的放射素学(DLR)在医学图像分析中取得了巨大的成功,并被认为是依赖手工特征的常规放射线学的替代。在这项研究中,我们旨在探索DLR使用预处理PET/CT预测鼻咽癌(NPC)中5年无进展生存期(PFS)的能力。方法:总共招募了257名患者(内部/外部队列中的170/87),具有晚期NPC(TNM III期或IVA)。我们开发了一个端到端的多模式DLR模型,其中优化了3D卷积神经网络以从预处理PET/CT图像中提取深度特征,并预测了5年PFS的概率。作为高级临床特征,TNM阶段可以集成到我们的DLR模型中,以进一步提高预后性能。为了比较常规放射素学和DLR,提取了1456个手工制作的特征,并从54种特征选择方法和9种分类方法的54个交叉组合中选择了最佳常规放射线方法。此外,使用临床特征,常规放射线学签名和DLR签名进行风险组分层。结果:我们使用PET和CT的多模式DLR模型比最佳常规放射线方法获得了更高的预后性能。此外,多模式DLR模型仅使用PET或仅CT优于单模式DLR模型。对于风险组分层,常规的放射线学签名和DLR签名使内部和外部队列中的高风险患者群体之间有显着差异,而外部队列中的临床特征则失败。结论:我们的研究确定了高级NPC中生存预测的潜在预后工具,表明DLR可以为当前TNM分期提供互补值。
translated by 谷歌翻译
头部和颈部(H \&N)肿瘤的分割和患者结果的预测对于患者的疾病诊断和治疗监测至关重要。强大的深度学习模型的当前发展受到缺乏大型多中心,多模态数据的阻碍,质量注释。 Miccai 2021头部和颈部肿瘤(Hecktor)分割和结果预测挑战产生了一种平台,用于比较氟 - 脱氧葡萄糖(FDG)-PET上的初级总体目标体积的分段方法和计算的断层摄影图像和预测H中的无进展生存对于细分任务,我们提出了一种基于编码器 - 解码器架构的新网络,具有完整的和跳过连接,以利用全尺度的低级和高级语义。此外,我们使用条件随机字段作为优化预测分段映射的后处理步骤。我们训练了多个用于肿瘤体积分割的神经网络,并且这些分段被整合在交叉验证中实现了0.75的平均骰子相似度系数,并在挑战测试数据集中实现了0.76。为了预测患者进展免费生存任务,我们提出了一种组合临床,辐射和深层学习特征的Cox比例危害回归。我们的生存预测模型在交叉验证中实现了0.82的一致性指数,并在挑战测试数据集中获得0.62。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
当肿瘤学家估计癌症患者的生存时,他们依靠多模式数据。尽管文献中已经提出了一些多模式的深度学习方法,但大多数人都依靠拥有两个或多个独立的网络,这些网络在整个模型的稍后阶段共享知识。另一方面,肿瘤学家在分析中没有这样做,而是通过多种来源(例如医学图像和患者病史)融合大脑中的信息。这项工作提出了一种深度学习方法,可以在量化癌症和估计患者生存时模仿肿瘤学家的分析行为。我们提出了TMSS,这是一种基于端到端变压器的多模式网络,用于分割和生存预测,该网络利用了变压器的优越性,这在于其能力处理不同模态的能力。该模型经过训练并验证了从头部和颈部肿瘤分割的训练数据集上的分割和预后任务以及PET/CT图像挑战(Hecktor)中的结果预测。我们表明,所提出的预后模型显着优于最先进的方法,其一致性指数为0.763 +/- 0.14,而与独立段模型相当的骰子得分为0.772 +/- 0.030。该代码公开可用。
translated by 谷歌翻译
肿瘤分割是放疗治疗计划的基本步骤。为了确定口咽癌患者(OPC)原发性肿瘤(GTVP)的准确分割,需要同时评估不同图像模态,并从不同方向探索每个图像体积。此外,分割的手动固定边界忽略了肿瘤描述中已知的空间不确定性。这项研究提出了一种新型的自动深度学习(DL)模型,以在注册的FDG PET/CT图像上进行逐片自适应GTVP分割的辐射肿瘤学家。我们包括138名在我们研究所接受过(化学)辐射治疗的OPC患者。我们的DL框架利用了间和板板的上下文。连续3片的串联FDG PET/CT图像和GTVP轮廓的序列用作输入。进行了3倍的交叉验证,进行了3​​次,对从113例患者的轴向(a),矢状(s)和冠状(c)平面提取的序列进行了训练。由于体积中的连续序列包含重叠的切片,因此每个切片产生了平均的三个结果预测。在A,S和C平面中,输出显示具有预测肿瘤的概率不同的区域。使用平均骰子得分系数(DSC)评估了25名患者的模型性能。预测是最接近地面真理的概率阈值(在A中为0.70,s为0.70,在s中为0.77,在C平面中为0.80)。提出的DL模型的有希望的结果表明,注册的FDG PET/CT图像上的概率图可以指导逐片自适应GTVP分割中的辐射肿瘤学家。
translated by 谷歌翻译
鼻咽癌(NPC)是由鼻咽引起的恶性上皮癌。生存预测是NPC患者的主要关注点,因为它提供了早期的预后信息来计划治疗。最近,基于深度学习的深层生存模型已经证明了胜过基于传统放射素学的生存预测模型的潜力。深度存活模型通常使用覆盖整个目标区域的图像贴片(例如,NPC的鼻咽)或仅包含分段肿瘤区域作为输入。但是,使用整个目标区域的模型还将包括非相关的背景信息,而使用分段肿瘤区域的模型将无视原发性肿瘤不存在的潜在预后信息(例如,局部淋巴结转移和相邻的组织侵入)。在这项研究中,我们提出了一个3D端到端的深层多任务生存模型(DEEPMTS),用于从预处理PET/CT的晚期NPC中进行关节存活预测和肿瘤分割。我们的新颖性是引入硬分段分割主链,以指导与原发性肿瘤相关的局部特征的提取,从而减少了非相关背景信息的干扰。此外,我们还引入了一个级联的生存网络,以捕获原发性肿瘤中存在的预后信息,并进一步利用从分段主链中得出的全球肿瘤信息(例如,肿瘤的大小,形状和位置)。我们使用两个临床数据集进行的实验表明,我们的DEEPMT始终超过传统的基于放射线学的生存预测模型和现有的深层生存模型。
translated by 谷歌翻译
头颈肿瘤分割挑战(Hecktor)2022为研究人员提供了一个平台,可以将其解决方案与3D CT和PET图像的肿瘤和淋巴结分割。在这项工作中,我们描述了针对Hecktor 2022分割任务的解决方案。我们将所有图像重新样本为共同的分辨率,在头颈部和颈部区域周围的作物,并从Monai训练Segresnet语义分割网络。我们使用5倍的交叉验证来选择最佳模型检查点。最终提交是3次运行中的15个型号的合奏。我们的解决方案(NVAUTO团队名称)以0.78802的汇总骰子得分在Hecktor22挑战排行榜上获得第一名。
translated by 谷歌翻译
多模式性荧光脱氧葡萄糖(FDG)正电子发射断层扫描 /计算机断层扫描(PET / CT)已常规用于评估常见癌症,例如肺癌,淋巴瘤和黑色素瘤。这主要归因于以下事实:PET/CT结合了对PET肿瘤检测的高灵敏度和CT的解剖学信息。在PET/CT图像评估中,自动肿瘤分割是重要的一步,近年来,基于深度学习的方法已成为最新方法。不幸的是,现有的方法倾向于过度细分肿瘤区域,并包括正常摄取器官,炎症和其他感染等区域。在这项研究中,我们引入了一个假阳性还原网络以克服这一限制。我们首先引入了一个自制的预训练的全球分割模块,以使用自我监督的预训练的编码器粗糙地描绘候选肿瘤区域。然后,通过局部细化模块去除假阳性来完善候选肿瘤区域。我们对MICCAI 2022自动病变分割的实验在全身FDG-PET/CT(AUTOPET)挑战数据集中表明,我们的方法在初步测试数据中获得了0.9324的骰子得分,并在排行榜上排名第一。我们的方法在最终测试数据的前7位方法中也排名,最终排名将在2022 MICCAI AUTOPET研讨会期间宣布。我们的代码可在以下网址提供:https://github.com/yigepeng/autopet_false_posisity_reduction。
translated by 谷歌翻译
Head and neck cancers are the fifth most common cancer worldwide, and recently, analysis of Positron Emission Tomography (PET) and Computed Tomography (CT) images has been proposed to identify patients with a prognosis. Even though the results look promising, more research is needed to further validate and improve the results. This paper presents the work done by team MLC for the 2022 version of the HECKTOR grand challenge held at MICCAI 2022. For Task 1, the automatic segmentation task, our approach was, in contrast to earlier solutions using 3D segmentation, to keep it as simple as possible using a 2D model, analyzing every slice as a standalone image. In addition, we were interested in understanding how different modalities influence the results. We proposed two approaches; one using only the CT scans to make predictions and another using a combination of the CT and PET scans. For Task 2, the prediction of recurrence-free survival, we first proposed two approaches, one where we only use patient data and one where we combined the patient data with segmentations from the image model. For the prediction of the first two approaches, we used Random Forest. In our third approach, we combined patient data and image data using XGBoost. Low kidney function might worsen cancer prognosis. In this approach, we therefore estimated the kidney function of the patients and included it as a feature. Overall, we conclude that our simple methods were not able to compete with the highest-ranking submissions, but we still obtained reasonably good scores. We also got interesting insights into how the combination of different modalities can influence the segmentation and predictions.
translated by 谷歌翻译
肺癌是癌症相关死亡率的主要原因。尽管新技术(例如图像分割)对于改善检测和较早诊断至关重要,但治疗该疾病仍然存在重大挑战。特别是,尽管治愈性分辨率增加,但许多术后患者仍会出现复发性病变。因此,非常需要预后工具,可以更准确地预测患者复发的风险。在本文中,我们探讨了卷积神经网络(CNN)在术前计算机断层扫描(CT)图像中存在的分割和复发风险预测。首先,随着医学图像分割的最新进展扩展,剩余的U-NET用于本地化和表征每个结节。然后,确定的肿瘤将传递给第二个CNN进行复发风险预测。该系统的最终结果是通过随机的森林分类器产生的,该分类器合成具有临床属性的第二个网络的预测。分割阶段使用LIDC-IDRI数据集,并获得70.3%的骰子得分。复发风险阶段使用了国家癌症研究所的NLST数据集,并获得了73.0%的AUC。我们提出的框架表明,首先,自动结节分割方法可以概括地为各种多任务系统提供管道,其次,深度学习和图像处理具有改善当前预后工具的潜力。据我们所知,这是第一个完全自动化的细分和复发风险预测系统。
translated by 谷歌翻译
病变分割是放射线工作流程的关键步骤。手动分割需要长时间的执行时间,并且容易发生可变性,从而损害了放射线研究及其鲁棒性的实现。在这项研究中,对非小细胞肺癌患者的计算机断层扫描图像进行了深入学习的自动分割方法。还评估了手动与自动分割在生存放射模型的性能中的使用。方法总共包括899名NSCLC患者(2个专有:A和B,1个公共数据集:C)。肺部病变的自动分割是通过训练先前开发的建筑NNU-NET进行的,包括2D,3D和级联方法。用骰子系数评估自动分割的质量,以手动轮廓为参考。通过从数据集A的手动和自动轮廓中提取放射性的手工制作和深度学习特征来探索自动分割对患者生存的放射素模型对患者生存的性能的影响。评估并比较模型的精度。结果通过平均2D和3D模型的预测以及应用后处理技术来提取最大连接的组件,可以实现具有骰子= 0.78 +(0.12)的自动和手动轮廓之间的最佳一致性。当使用手动或自动轮廓,手工制作或深度特征时,在生存模型的表现中未观察到统计差异。最好的分类器显示出0.65至0.78之间的精度。结论NNU-NET在自动分割肺部病变中的有希望的作用已得到证实,从而大大降低了时必的医生的工作量,而不会损害基于放射线学的生存预测模型的准确性。
translated by 谷歌翻译
早期检测改善了胰腺导管腺癌(PDAC)中的预后,但挑战,因为病变通常很小,并且在对比增强的计算断层扫描扫描(CE-CT)上定义很差。深度学习可以促进PDAC诊断,但是当前模型仍然无法识别小(<2cm)病变。在这项研究中,最先进的深度学习模型用于开发用于PDAC检测的自动框架,专注于小病变。另外,研究了整合周围解剖学的影响。 CE-CT来自119个病理验证的PDAC患者的群组和123名没有PDAC患者的队列用于训练NNUNET用于自动病变检测和分割(\ TEXTIT {NNUNET \ _t})。训练了两种额外的鼻塞,以研究解剖学积分的影响:(1)分割胰腺和肿瘤(\ yryit {nnunet \ _tp}),(2)分割胰腺,肿瘤和多周围的解剖结构(\ textit {nnunet \_多发性硬化症})。外部可公开的测试集用于比较三个网络的性能。 \ Textit {nnunet \ _ms}实现了最佳性能,在整个测试集的接收器操作特性曲线下的区域为0.91,肿瘤的0.88 <2cm,显示最先进的深度学习可以检测到小型PDAC和解剖信息的好处。
translated by 谷歌翻译
Achieving accurate and automated tumor segmentation plays an important role in both clinical practice and radiomics research. Segmentation in medicine is now often performed manually by experts, which is a laborious, expensive and error-prone task. Manual annotation relies heavily on the experience and knowledge of these experts. In addition, there is much intra- and interobserver variation. Therefore, it is of great significance to develop a method that can automatically segment tumor target regions. In this paper, we propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT), which combines the high sensitivity of PET and the precise anatomical information of CT. We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors, which uses multi-scale convolution operation to extract feature information and can highlight the tumor region location information and suppress the non-tumor region location information. In addition, our network uses dual-channel inputs in the coding stage and fuses them in the decoding stage, which can take advantage of the differences and complementarities between PET and CT. We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset, and compared with other attention methods for tumor segmentation. The DSC score of 0.8378 on STS dataset and 0.8076 on HECKTOR dataset show that ISA-Net method achieves better segmentation performance and has better generalization. Conclusions: The method proposed in this paper is based on multi-modal medical image tumor segmentation, which can effectively utilize the difference and complementarity of different modes. The method can also be applied to other multi-modal data or single-modal data by proper adjustment.
translated by 谷歌翻译
人工智能(AI)技术具有重要潜力,可以实现有效,鲁棒和自动的图像表型,包括识别细微图案。基于AI的检测搜索图像空间基于模式和特征来找到兴趣区域。存在一种良性的肿瘤组织学,可以通过使用图像特征的基于AI的分类方法来识别。图像从图像中提取可用于的可覆盖方式,可以通过显式(手工/工程化)和深度辐射谱系框架来探索途径。辐射瘤分析有可能用作非侵入性技术,以准确表征肿瘤,以改善诊断和治疗监测。这项工作介绍基于AI的技术,专注于肿瘤宠物和PET / CT成像,用于不同的检测,分类和预测/预测任务。我们还讨论了所需的努力,使AI技术转换为常规临床工作流程,以及潜在的改进和互补技术,例如在电子健康记录和神经象征性AI技术上使用自然语言处理。
translated by 谷歌翻译
最早的早期结肠直肠癌(CRC)患者可以单独通过手术治愈,只有某些高风险的早期CRC患者受益于佐剂化学疗法。然而,很少有验证的生物标志物可用于准确预测术后化疗的生存效果。我们开发了一种新的深度学习算法(CRCNET),使用来自分子和细胞肿瘤(MCO)的全滑动图像来预测II / III CRC中辅助化疗的存活效益。我们通过交叉验证和外部使用来自癌症基因组Atlas(TCGA)的独立队列的外部验证了CRCNet。我们表明,CRCNet不仅可以准确地预测生存预后,还可以进行佐剂化疗的治疗效果。 CRCNET鉴定了来自佐剂化疗的高危亚组益处,在化疗治疗的患者中,观察到辅助化疗最大而显着的存活率。相反,在CRCNET低和中风险亚组中观察到最小化疗益处。因此,CRCNET可能在阶段II / III CRC的指导治疗方面具有很大的用途。
translated by 谷歌翻译
对使用基于深度学习的方法来实现正电子发射断层扫描(PET CT)扫描中的病变的完全自动分割的研究兴趣越来越多,以实现各种癌症的预后。医学图像细分的最新进展表明,NNUNET对于各种任务是可行的。但是,PET图像中的病变分割并不直接,因为病变和生理摄取具有相似的分布模式。它们的区别需要CT图像中的额外结构信息。本文引入了一种基于NNUNET的病变分割任务的方法。提出的模型是根据关节2D和3D NNUNET结构设计的,以预测整个身体的病变。它允许对潜在病变的自动分割。我们在AUTOPET挑战的背景下评估了所提出的方法,该方法衡量了骰子评分指标,假阳性体积和假阴性体积的病变分割性能。
translated by 谷歌翻译
随着时间的流逝,肿瘤体积和肿瘤特征的变化是癌症治疗的重要生物标志物。在这种情况下,FDG-PET/CT扫描通常用于癌症的分期和重新分期,因为放射性标记的荧光脱氧葡萄糖在高代谢的地区进行了。不幸的是,这些具有高代谢的区域不是针对肿瘤的特异性,也可以代表正常功能器官,炎症或感染的生理吸收,在这些扫描中使详细且可靠的肿瘤分割成为一项苛刻的任务。 AUTOPET挑战赛解决了这一研究差距,该挑战提供了来自900名患者的FDG-PET/CT扫描的公共数据集,以鼓励该领域进一步改善。我们对这一挑战的贡献是由两个最先进的分割模型组成的合奏,即NN-UNET和SWIN UNETR,并以最大强度投影分类器的形式增强,该分类器的作用像是门控机制。如果它预测了病变的存在,则两种分割都是通过晚期融合方法组合的。我们的解决方案在我们的交叉验证中诊断出患有肺癌,黑色素瘤和淋巴瘤的患者的骰子得分为72.12 \%。代码:https://github.com/heiligerl/autopet_submission
translated by 谷歌翻译
Tongue cancer is a common oral cavity malignancy that originates in the mouth and throat. Much effort has been invested in improving its diagnosis, treatment, and management. Surgical removal, chemotherapy, and radiation therapy remain the major treatment for tongue cancer. The survival of patients determines the treatment effect. Previous studies have identified certain survival and risk factors based on descriptive statistics, ignoring the complex, nonlinear relationship among clinical and demographic variables. In this study, we utilize five cutting-edge machine learning models and clinical data to predict the survival of tongue cancer patients after treatment. Five-fold cross-validation, bootstrap analysis, and permutation feature importance are applied to estimate and interpret model performance. The prognostic factors identified by our method are consistent with previous clinical studies. Our method is accurate, interpretable, and thus useable as additional evidence in tongue cancer treatment and management.
translated by 谷歌翻译