头颈肿瘤分割挑战(Hecktor)2022为研究人员提供了一个平台,可以将其解决方案与3D CT和PET图像的肿瘤和淋巴结分割。在这项工作中,我们描述了针对Hecktor 2022分割任务的解决方案。我们将所有图像重新样本为共同的分辨率,在头颈部和颈部区域周围的作物,并从Monai训练Segresnet语义分割网络。我们使用5倍的交叉验证来选择最佳模型检查点。最终提交是3次运行中的15个型号的合奏。我们的解决方案(NVAUTO团队名称)以0.78802的汇总骰子得分在Hecktor22挑战排行榜上获得第一名。
translated by 谷歌翻译
颅内出血分割挑战(实例2022)为研究人员提供了一个平台,以将其解决方案与3D CTS的出血中风区域进行分割。在这项工作中,我们将解决方案描述为实例2022。我们使用2D分割网络,来自Monai的Segresnet,在不重采样的情况下操作切片。最终提交是18个模型的合奏。我们的解决方案(NVAUTO团队名称)在骰子度量标准(0.721)和总排名2方面获得了最高位置。
translated by 谷歌翻译
缺血性中风病变细分挑战(Isles 2022)为研究人员提供了一个平台,可以将其解决方案与3D MRI的缺血性中风区域进行比较。在这项工作中,我们描述了我们对2022分段任务的解决方案。我们将所有图像重新样本为一个共同的分辨率,使用两种输入MRI模式(DWI和ADC),并使用MONAI的Train Segresnet语义分割网络。最终提交是15个模型的合奏(来自3倍交叉验证的3次运行)。我们的解决方案(NVAUTO团队名称)在骰子度量标准(0.824)和总排名第2(基于合并的度量排名)方面获得了最高位置。
translated by 谷歌翻译
Outcome prediction is crucial for head and neck cancer patients as it can provide prognostic information for early treatment planning. Radiomics methods have been widely used for outcome prediction from medical images. However, these methods are limited by their reliance on intractable manual segmentation of tumor regions. Recently, deep learning methods have been proposed to perform end-to-end outcome prediction so as to remove the reliance on manual segmentation. Unfortunately, without segmentation masks, these methods will take the whole image as input, such that makes them difficult to focus on tumor regions and potentially unable to fully leverage the prognostic information within the tumor regions. In this study, we propose a radiomics-enhanced deep multi-task framework for outcome prediction from PET/CT images, in the context of HEad and neCK TumOR segmentation and outcome prediction challenge (HECKTOR 2022). In our framework, our novelty is to incorporate radiomics as an enhancement to our recently proposed Deep Multi-task Survival model (DeepMTS). The DeepMTS jointly learns to predict the survival risk scores of patients and the segmentation masks of tumor regions. Radiomics features are extracted from the predicted tumor regions and combined with the predicted survival risk scores for final outcome prediction, through which the prognostic information in tumor regions can be further leveraged. Our method achieved a C-index of 0.681 on the testing set, placing the 2nd on the leaderboard with only 0.00068 lower in C-index than the 1st place.
translated by 谷歌翻译
多模式性荧光脱氧葡萄糖(FDG)正电子发射断层扫描 /计算机断层扫描(PET / CT)已常规用于评估常见癌症,例如肺癌,淋巴瘤和黑色素瘤。这主要归因于以下事实:PET/CT结合了对PET肿瘤检测的高灵敏度和CT的解剖学信息。在PET/CT图像评估中,自动肿瘤分割是重要的一步,近年来,基于深度学习的方法已成为最新方法。不幸的是,现有的方法倾向于过度细分肿瘤区域,并包括正常摄取器官,炎症和其他感染等区域。在这项研究中,我们引入了一个假阳性还原网络以克服这一限制。我们首先引入了一个自制的预训练的全球分割模块,以使用自我监督的预训练的编码器粗糙地描绘候选肿瘤区域。然后,通过局部细化模块去除假阳性来完善候选肿瘤区域。我们对MICCAI 2022自动病变分割的实验在全身FDG-PET/CT(AUTOPET)挑战数据集中表明,我们的方法在初步测试数据中获得了0.9324的骰子得分,并在排行榜上排名第一。我们的方法在最终测试数据的前7位方法中也排名,最终排名将在2022 MICCAI AUTOPET研讨会期间宣布。我们的代码可在以下网址提供:https://github.com/yigepeng/autopet_false_posisity_reduction。
translated by 谷歌翻译
多模式脑肿瘤分割挑战(BRALS)2021的另一年提供了较大的数据集,以促进脑肿瘤分割方法的合作和研究,这对于疾病分析和治疗规划是必要的。 BRATS 2021的大型数据集大小和现代GPU的出现为学习基于深度学习的方法提供了更好的机会,以学习来自数据的肿瘤表示。在这项工作中,我们维护了一个基于编码器解码器的分段网络,但专注于网络培训过程的修改,从而最大限度地减少扰动下的冗余。鉴于培训的网络,我们进一步介绍了基于置信的组合技术,以进一步提高性能。我们评估了Brats 2021验证板上的方法,并分别为增强肿瘤核心,肿瘤核心和全肿瘤的0.8600,0.8868和0.9265平均骰子。我们的团队(NVAUTO)提交是在ET和TC分数方面的最高表演,并且在WT分数方面的十大表演团队内。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
头部和颈部(H \&N)肿瘤的分割和患者结果的预测对于患者的疾病诊断和治疗监测至关重要。强大的深度学习模型的当前发展受到缺乏大型多中心,多模态数据的阻碍,质量注释。 Miccai 2021头部和颈部肿瘤(Hecktor)分割和结果预测挑战产生了一种平台,用于比较氟 - 脱氧葡萄糖(FDG)-PET上的初级总体目标体积的分段方法和计算的断层摄影图像和预测H中的无进展生存对于细分任务,我们提出了一种基于编码器 - 解码器架构的新网络,具有完整的和跳过连接,以利用全尺度的低级和高级语义。此外,我们使用条件随机字段作为优化预测分段映射的后处理步骤。我们训练了多个用于肿瘤体积分割的神经网络,并且这些分段被整合在交叉验证中实现了0.75的平均骰子相似度系数,并在挑战测试数据集中实现了0.76。为了预测患者进展免费生存任务,我们提出了一种组合临床,辐射和深层学习特征的Cox比例危害回归。我们的生存预测模型在交叉验证中实现了0.82的一致性指数,并在挑战测试数据集中获得0.62。
translated by 谷歌翻译
Inspired by the recent success of Transformers for Natural Language Processing and vision Transformer for Computer Vision, many researchers in the medical imaging community have flocked to Transformer-based networks for various main stream medical tasks such as classification, segmentation, and estimation. In this study, we analyze, two recently published Transformer-based network architectures for the task of multimodal head-and-tumor segmentation and compare their performance to the de facto standard 3D segmentation network - the nnU-Net. Our results showed that modeling long-range dependencies may be helpful in cases where large structures are present and/or large field of view is needed. However, for small structures such as head-and-neck tumor, the convolution-based U-Net architecture seemed to perform well, especially when training dataset is small and computational resource is limited.
translated by 谷歌翻译
对于头颈癌(HNC)患者管理,自动总肿瘤量(GTV)细分和准确的治疗前癌症复发预测对于协助医师设计个性化管理计划非常重要,这有可能改善治疗结果和治疗结果和HNC患者的生活质量。在本文中,我们基于HNC患者的组合预处理正电子发射断层扫描/计算机发射断层扫描(PET/CT)扫描,开发了一种自动原发性肿瘤(GTVP)和淋巴结(GTVN)分割方法。我们从分段的肿瘤体积中提取了放射素学特征,并构建了多模式肿瘤复发生存率(RFS)预测模型,该模型融合了预测由单独的CT放射线学,PET放射线学和临床模型融合在一起。我们进行了5倍的交叉验证,以训练和评估MICCAI 2022头和颈部肿瘤分割和结果预测挑战(Hecktor)数据集的方法。 GTVP和GTVN分割的测试队列的集合预测分别达到0.77和0.73,RFS预测的C-指数值为0.67。该代码公开可用(https://github.com/wangkaiwan/hecktor-2022-airt)。我们团队的名字叫艾特。
translated by 谷歌翻译
对使用基于深度学习的方法来实现正电子发射断层扫描(PET CT)扫描中的病变的完全自动分割的研究兴趣越来越多,以实现各种癌症的预后。医学图像细分的最新进展表明,NNUNET对于各种任务是可行的。但是,PET图像中的病变分割并不直接,因为病变和生理摄取具有相似的分布模式。它们的区别需要CT图像中的额外结构信息。本文引入了一种基于NNUNET的病变分割任务的方法。提出的模型是根据关节2D和3D NNUNET结构设计的,以预测整个身体的病变。它允许对潜在病变的自动分割。我们在AUTOPET挑战的背景下评估了所提出的方法,该方法衡量了骰子评分指标,假阳性体积和假阴性体积的病变分割性能。
translated by 谷歌翻译
我们为Brats21挑战中的脑肿瘤分割任务提出了优化的U-Net架构。为了找到最佳模型架构和学习时间表,我们运行了一个广泛的消融研究来测试:深度监督损失,焦点,解码器注意,下降块和残余连接。此外,我们搜索了U-Net编码器的最佳深度,卷积通道数量和后处理策略。我们的方法赢得了验证阶段,并在测试阶段进行了第三位。我们已开放源代码以在NVIDIA深度学习示例GitHub存储库中重现我们的Brats21提交。
translated by 谷歌翻译
肿瘤分割是放疗治疗计划的基本步骤。为了确定口咽癌患者(OPC)原发性肿瘤(GTVP)的准确分割,需要同时评估不同图像模态,并从不同方向探索每个图像体积。此外,分割的手动固定边界忽略了肿瘤描述中已知的空间不确定性。这项研究提出了一种新型的自动深度学习(DL)模型,以在注册的FDG PET/CT图像上进行逐片自适应GTVP分割的辐射肿瘤学家。我们包括138名在我们研究所接受过(化学)辐射治疗的OPC患者。我们的DL框架利用了间和板板的上下文。连续3片的串联FDG PET/CT图像和GTVP轮廓的序列用作输入。进行了3倍的交叉验证,进行了3​​次,对从113例患者的轴向(a),矢状(s)和冠状(c)平面提取的序列进行了训练。由于体积中的连续序列包含重叠的切片,因此每个切片产生了平均的三个结果预测。在A,S和C平面中,输出显示具有预测肿瘤的概率不同的区域。使用平均骰子得分系数(DSC)评估了25名患者的模型性能。预测是最接近地面真理的概率阈值(在A中为0.70,s为0.70,在s中为0.77,在C平面中为0.80)。提出的DL模型的有希望的结果表明,注册的FDG PET/CT图像上的概率图可以指导逐片自适应GTVP分割中的辐射肿瘤学家。
translated by 谷歌翻译
来自3D CTA的多结构(即肾脏,肾脏,动脉和静脉)的准确和自动分割是基于手术的肾脏癌治疗的最重要任务之一(例如,腹腔镜部分肾切除术)。本文简要介绍了MICCAI 2022 KIPA挑战中多结构SEG-Interation方法的主要技术细节。本文的主要贡献是,我们设计具有大量上下文信息限制功能的3D UNET。我们的方法在MICCAI 2022 KIPA CHAL-LENGE开放测试数据集上排名第八,平均位置为8.2。我们的代码和训练有素的模型可在https://github.com/fengjiejiejiejie/kipa22_nnunet上公开获得。
translated by 谷歌翻译
Achieving accurate and automated tumor segmentation plays an important role in both clinical practice and radiomics research. Segmentation in medicine is now often performed manually by experts, which is a laborious, expensive and error-prone task. Manual annotation relies heavily on the experience and knowledge of these experts. In addition, there is much intra- and interobserver variation. Therefore, it is of great significance to develop a method that can automatically segment tumor target regions. In this paper, we propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT), which combines the high sensitivity of PET and the precise anatomical information of CT. We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors, which uses multi-scale convolution operation to extract feature information and can highlight the tumor region location information and suppress the non-tumor region location information. In addition, our network uses dual-channel inputs in the coding stage and fuses them in the decoding stage, which can take advantage of the differences and complementarities between PET and CT. We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset, and compared with other attention methods for tumor segmentation. The DSC score of 0.8378 on STS dataset and 0.8076 on HECKTOR dataset show that ISA-Net method achieves better segmentation performance and has better generalization. Conclusions: The method proposed in this paper is based on multi-modal medical image tumor segmentation, which can effectively utilize the difference and complementarity of different modes. The method can also be applied to other multi-modal data or single-modal data by proper adjustment.
translated by 谷歌翻译
当肿瘤学家估计癌症患者的生存时,他们依靠多模式数据。尽管文献中已经提出了一些多模式的深度学习方法,但大多数人都依靠拥有两个或多个独立的网络,这些网络在整个模型的稍后阶段共享知识。另一方面,肿瘤学家在分析中没有这样做,而是通过多种来源(例如医学图像和患者病史)融合大脑中的信息。这项工作提出了一种深度学习方法,可以在量化癌症和估计患者生存时模仿肿瘤学家的分析行为。我们提出了TMSS,这是一种基于端到端变压器的多模式网络,用于分割和生存预测,该网络利用了变压器的优越性,这在于其能力处理不同模态的能力。该模型经过训练并验证了从头部和颈部肿瘤分割的训练数据集上的分割和预后任务以及PET/CT图像挑战(Hecktor)中的结果预测。我们表明,所提出的预后模型显着优于最先进的方法,其一致性指数为0.763 +/- 0.14,而与独立段模型相当的骰子得分为0.772 +/- 0.030。该代码公开可用。
translated by 谷歌翻译
Head and neck cancers are the fifth most common cancer worldwide, and recently, analysis of Positron Emission Tomography (PET) and Computed Tomography (CT) images has been proposed to identify patients with a prognosis. Even though the results look promising, more research is needed to further validate and improve the results. This paper presents the work done by team MLC for the 2022 version of the HECKTOR grand challenge held at MICCAI 2022. For Task 1, the automatic segmentation task, our approach was, in contrast to earlier solutions using 3D segmentation, to keep it as simple as possible using a 2D model, analyzing every slice as a standalone image. In addition, we were interested in understanding how different modalities influence the results. We proposed two approaches; one using only the CT scans to make predictions and another using a combination of the CT and PET scans. For Task 2, the prediction of recurrence-free survival, we first proposed two approaches, one where we only use patient data and one where we combined the patient data with segmentations from the image model. For the prediction of the first two approaches, we used Random Forest. In our third approach, we combined patient data and image data using XGBoost. Low kidney function might worsen cancer prognosis. In this approach, we therefore estimated the kidney function of the patients and included it as a feature. Overall, we conclude that our simple methods were not able to compete with the highest-ranking submissions, but we still obtained reasonably good scores. We also got interesting insights into how the combination of different modalities can influence the segmentation and predictions.
translated by 谷歌翻译
随着时间的流逝,肿瘤体积和肿瘤特征的变化是癌症治疗的重要生物标志物。在这种情况下,FDG-PET/CT扫描通常用于癌症的分期和重新分期,因为放射性标记的荧光脱氧葡萄糖在高代谢的地区进行了。不幸的是,这些具有高代谢的区域不是针对肿瘤的特异性,也可以代表正常功能器官,炎症或感染的生理吸收,在这些扫描中使详细且可靠的肿瘤分割成为一项苛刻的任务。 AUTOPET挑战赛解决了这一研究差距,该挑战提供了来自900名患者的FDG-PET/CT扫描的公共数据集,以鼓励该领域进一步改善。我们对这一挑战的贡献是由两个最先进的分割模型组成的合奏,即NN-UNET和SWIN UNETR,并以最大强度投影分类器的形式增强,该分类器的作用像是门控机制。如果它预测了病变的存在,则两种分割都是通过晚期融合方法组合的。我们的解决方案在我们的交叉验证中诊断出患有肺癌,黑色素瘤和淋巴瘤的患者的骰子得分为72.12 \%。代码:https://github.com/heiligerl/autopet_submission
translated by 谷歌翻译
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively. The docker image for the winning submission is publicly available at (https://hub.docker.com/r/razeineldin/camed22).
translated by 谷歌翻译
肿瘤浸润淋巴细胞(TIL)的定量已被证明是乳腺癌患者预后的独立预测因子。通常,病理学家对含有tils的基质区域的比例进行估计,以获得TILS评分。乳腺癌(Tiger)挑战中肿瘤浸润淋巴细胞旨在评估计算机生成的TILS评分的预后意义,以预测作为COX比例风险模型的一部分的存活率。在这一挑战中,作为Tiager团队,我们已经开发了一种算法,以将肿瘤与基质与基质进行第一部分,然后将肿瘤散装区域用于TILS检测。最后,我们使用这些输出来生成每种情况的TILS分数。在初步测试中,我们的方法达到了肿瘤 - 细胞瘤的加权骰子评分为0.791,而淋巴细胞检测的FROC得分为0.572。为了预测生存,我们的模型达到了0.719的C索引。这些结果在老虎挑战的初步测试排行榜中获得了第一名。
translated by 谷歌翻译