了解视觉问题的回答对于众多人类活动至关重要。但是,它在人工智能努力的核心面临着重大挑战。本文介绍了使用过去几年中发生的图像的视觉问题回答快速进步的最新进展。最近已经发布了有关改进视觉问题答案系统体系结构的研究的巨大增长,显示了多模式体系结构的重要性。Manmadhan等人的评论论文中提到了有关视觉问题回答的好处的几点。(2020),本文构建的,包括该领域的后续更新。
translated by 谷歌翻译
医学视觉问题应答(VQA)是医疗人工智能和流行的VQA挑战的组合。鉴于医学形象和在自然语言中的临床相关问题,预计医疗VQA系统将预测符号和令人信服的答案。虽然一般域VQA已被广泛研究,但医疗VQA仍然需要特定的调查和探索,因为它的任务特征是。在本调查的第一部分,我们涵盖并讨论了关于数据源,数据数量和任务功能的公开可用的医疗VQA数据集。在第二部分中,我们审查了医疗VQA任务中使用的方法。在最后,我们分析了该领域的一些有效的挑战,并讨论了未来的研究方向。
translated by 谷歌翻译
视觉问题应答(VQA)是一个具有挑战性的任务,在计算机视觉和自然语言处理领域中引起了越来越多的关注。然而,目前的视觉问题回答具有语言偏差问题,这减少了模型的稳健性,对视觉问题的实际应用产生了不利影响。在本文中,我们首次对该领域进行了全面的审查和分析,并根据三个类别对现有方法进行分类,包括增强视觉信息,弱化语言前瞻,数据增强和培训策略。与此同时,依次介绍相关的代表方法,依次汇总和分析。揭示和分类语言偏见的原因。其次,本文介绍了主要用于测试的数据集,并报告各种现有方法的实验结果。最后,我们讨论了该领域的可能的未来研究方向。
translated by 谷歌翻译
Artificial Intelligence (AI) and its applications have sparked extraordinary interest in recent years. This achievement can be ascribed in part to advances in AI subfields including Machine Learning (ML), Computer Vision (CV), and Natural Language Processing (NLP). Deep learning, a sub-field of machine learning that employs artificial neural network concepts, has enabled the most rapid growth in these domains. The integration of vision and language has sparked a lot of attention as a result of this. The tasks have been created in such a way that they properly exemplify the concepts of deep learning. In this review paper, we provide a thorough and an extensive review of the state of the arts approaches, key models design principles and discuss existing datasets, methods, their problem formulation and evaluation measures for VQA and Visual reasoning tasks to understand vision and language representation learning. We also present some potential future paths in this field of research, with the hope that our study may generate new ideas and novel approaches to handle existing difficulties and develop new applications.
translated by 谷歌翻译
对比语言 - 图像预培训(剪辑)在广泛的图像中与跨模仿监督学习的卓越成功 - 在线收集的文本对。到目前为止,夹子的有效性主要是在一般结构域多数制问题中进行研究。这项工作评估了剪辑的有效性,用于医学视觉问题的任务(MedVQA)。为此,我们向PubMedClip提供PubMedClip,基于PubMed文章的医疗领域的微调版本。我们的实验是在两个MedVQA基准数据集中进行,并调查两种MedVQA方法,MEVF(增强的视觉功能)和QCR(通过条件推理的问题回答)。对于这些中的每一个,我们使用PubMedClip,原始剪辑和最先进的MAML(模型 - 不可知的Meta-Learning)网络仅评估视觉表示学习的优点,仅在视觉数据上训练。我们为我们的Medvqa管道和预训练PubMedclip开源代码。与MAML的Visual Encoder相比,剪辑和PubMedClip实现了改进。 PubMedclip以最高精度的最佳效果达到最佳结果,高达3%。个别示例说明了与先前广泛使用的MAML网络相比的PubMedclip的强度。 PubMedclip语言监督的视觉表现出学习导致MedVQA的显着改进。我们的实验揭示了在以前的工作中尚未传授的两个MedVQA基准数据集中的分布差异,并在PubMedClip中导致不同的后端视觉编码,在这些数据集上表现出不同的行为。此外,我们证明了VQA一般与医学领域的基本性能差异。
translated by 谷歌翻译
变压器架构已经带来了计算语言领域的根本变化,这已经由经常性神经网络主导多年。它的成功还意味着具有语言和愿景的跨模型任务的大幅度变化,许多研究人员已经解决了这个问题。在本文中,我们审查了该领域中的一些最关键的里程碑,以及变压器架构如何纳入Visuol语言跨模型任务的整体趋势。此外,我们讨论了当前的局限性,并推测了我们发现迫在眉睫的一些前景。
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
手术中的视觉问题回答(VQA)在很大程度上没有探索。专家外科医生稀缺,经常被临床和学术工作负载超负荷。这种超负荷通常会限制他们从患者,医学生或初级居民与手术程序有关的时间回答问卷。有时,学生和初级居民也不要在课堂上提出太多问题以减少干扰。尽管计算机辅助的模拟器和过去的手术程序记录已经可以让他们观察和提高技能,但他们仍然非常依靠医学专家来回答他们的问题。将手术VQA系统作为可靠的“第二意见”可以作为备份,并减轻医疗专家回答这些问题的负担。缺乏注释的医学数据和特定于域的术语的存在限制了对手术程序的VQA探索。在这项工作中,我们设计了一项外科VQA任务,该任务根据外科手术场景回答有关手术程序的问卷。扩展MICCAI内窥镜视觉挑战2018数据集和工作流识别数据集,我们介绍了两个具有分类和基于句子的答案的手术VQA数据集。为了执行手术VQA,我们采用视觉文本变压器模型。我们进一步介绍了一个基于MLP的剩余Visualbert编码器模型,该模型可以在视觉令牌和文本令牌之间进行相互作用,从而改善了基于分类的答案的性能。此外,我们研究了输入图像贴片数量和时间视觉特征对分类和基于句子的答案中模型性能的影响。
translated by 谷歌翻译
We present an effective method for fusing visual-and-language representations for several question answering tasks including visual question answering and visual entailment. In contrast to prior works that concatenate unimodal representations or use only cross-attention, we compose multimodal representations via channel fusion. By fusing on the channels, the model is able to more effectively align the tokens compared to standard methods. These multimodal representations, which we call compound tokens are generated with cross-attention transformer layers. First, vision tokens are used as queries to retrieve compatible text tokens through cross-attention. We then chain the vision tokens and the queried text tokens along the channel dimension. We call the resulting representations compound tokens. A second group of compound tokens are generated using an analogous process where the text tokens serve as queries to the cross-attention layer. We concatenate all the compound tokens for further processing with multimodal encoder. We demonstrate the effectiveness of compound tokens using an encoder-decoder vision-language model trained end-to-end in the open-vocabulary setting. Compound Tokens achieve highly competitive performance across a range of question answering tasks including GQA, VQA2.0, and SNLI-VE.
translated by 谷歌翻译
视觉问题应答(VQA)任务利用视觉图像和语言分析来回回答图像的文本问题。它是一个流行的研究课题,在过去十年中越来越多的现实应用。本文介绍了我们最近对AliceMind-MMU的研究(阿里巴巴的编码器 - 解码器来自Damo Academy - 多媒体理解的机器智能实验室),其比人类在VQA上获得相似甚至略微更好的结果。这是通过系统地改善VQA流水线来实现的,包括:(1)具有全面的视觉和文本特征表示的预培训; (2)与学习参加的有效跨模型互动; (3)一个新颖的知识挖掘框架,具有专门的专业专家模块,适用于复杂的VQA任务。处理不同类型的视觉问题,需要具有相应的专业知识在提高我们的VQA架构的表现方面发挥着重要作用,这取决于人力水平。进行了广泛的实验和分析,以证明新的研究工作的有效性。
translated by 谷歌翻译
深度学习属于人工智能领域,机器执行通常需要某种人类智能的任务。类似于大脑的基本结构,深度学习算法包括一种人工神经网络,其类似于生物脑结构。利用他们的感官模仿人类的学习过程,深入学习网络被送入(感官)数据,如文本,图像,视频或声音。这些网络在不同的任务中优于最先进的方法,因此,整个领域在过去几年中看到了指数增长。这种增长在过去几年中每年超过10,000多种出版物。例如,只有在医疗领域中的所有出版物中覆盖的搜索引擎只能在Q3 2020中覆盖所有出版物的子集,用于搜索术语“深度学习”,其中大约90%来自过去三年。因此,对深度学习领域的完全概述已经不可能在不久的将来获得,并且在不久的将来可能会难以获得难以获得子场的概要。但是,有几个关于深度学习的综述文章,这些文章专注于特定的科学领域或应用程序,例如计算机愿景的深度学习进步或在物体检测等特定任务中进行。随着这些调查作为基础,这一贡献的目的是提供对不同科学学科的深度学习的第一个高级,分类的元调查。根据底层数据来源(图像,语言,医疗,混合)选择了类别(计算机愿景,语言处理,医疗信息和其他工程)。此外,我们还审查了每个子类别的常见架构,方法,专业,利弊,评估,挑战和未来方向。
translated by 谷歌翻译
视觉问题回答是自然语言和愿景理解的重要任务。但是,在大多数公众视觉问题上回答了诸如VQA,CLEVR之类的数据集,这些问题是针对给定图像的特定于“她的眼睛是什么颜色?”的人类产生的。人类产生的众包问题相对简单,有时对某些实体或属性有偏见。在本文中,我们介绍了一个基于Image-Chiqa的新问题回答数据集。它包含Internet用户发布的现实查询,并结合了几个相关的开放域图像。系统应确定图像是否可以回答问题。与以前的VQA数据集不同,这些问题是现实世界中独立的查询,这些查询更加各种和无偏见。与先前的图像回程或图像捕获数据集相比,Chiqa不仅衡量了相关性,而且还可以衡量答案性,这需要更细粒度的视力和语言推理。 Chiqa包含超过40k的问题和超过200k的问题图像对。将三级2/1/0标签分配给每个对,指示完美的答案,部分答案和无关紧要。数据分析表明,Chiqa需要对语言和视觉有深入的了解,包括接地,比较和阅读。我们评估了几种最先进的视觉语言模型,例如ALBEF,表明仍然有一个很大的改进奇卡的空间。
translated by 谷歌翻译
过去十年互联网上可用的信息和信息量增加。该数字化导致自动应答系统需要从冗余和过渡知识源中提取富有成效的信息。这些系统旨在利用自然语言理解(NLU)从此巨型知识源到用户查询中最突出的答案,从而取决于问题答案(QA)字段。问题答案涉及但不限于用户问题映射的步骤,以获取相关查询,检索相关信息,从检索到的信息等找到最佳合适的答案等。当前对深度学习模型的当前改进估计所有这些任务的令人信服的性能改进。在本综述工作中,根据问题的类型,答案类型,证据答案来源和建模方法进行分析QA场的研究方向。此细节随后是自动问题生成,相似性检测和语言的低资源可用性等领域的开放挑战。最后,提出了对可用数据集和评估措施的调查。
translated by 谷歌翻译
医学视觉和语言预训练提供了一种可行的解决方案,可以从医学图像和文本中提取有效的视觉和语言表示。但是,很少有研究专门研究该领域,以促进医学视觉和语言理解。在本文中,我们提出了一种自我监督的学习范式,该学习范式使用多模式掩盖的自动编码器(M $^3 $ ae),通过从随机掩盖的图像和文本中重新构造缺失的像素和代币来学习跨模式域知识。有三个关键设计可以使这种简单的方法起作用。首先,考虑到视觉和语言的不同信息密度,我们为输入图像和文本采用不同的掩蔽比,其中将较大的掩模比用于图像。其次,我们使用来自不同层的视觉和文本特征来执行重建,以处理视觉和语言中不同级别的抽象。第三,我们为视觉和语言解码器开发了不同的设计(即,视觉的变压器和语言的多层感知器)。为了进行全面的评估并促进进一步的研究,我们构建了包括三个任务的医学视觉和语言基准。实验结果证明了我们方法的有效性,在所有下游任务上都取得了最新的结果。此外,我们进行进一步的分析,以更好地验证方法的不同组成部分和预训练的各种设置。源代码可在〜\ url {https://github.com/zhjohnchan/m3ae}中获得。
translated by 谷歌翻译
Vision-and-language reasoning requires an understanding of visual concepts, language semantics, and, most importantly, the alignment and relationships between these two modalities. We thus propose the LXMERT (Learning Cross-Modality Encoder Representations from Transformers) framework to learn these vision-and-language connections. In LXMERT, we build a large-scale Transformer model that consists of three encoders: an object relationship encoder, a language encoder, and a cross-modality encoder. Next, to endow our model with the capability of connecting vision and language semantics, we pre-train the model with large amounts of image-and-sentence pairs, via five diverse representative pre-training tasks: masked language modeling, masked object prediction (feature regression and label classification), cross-modality matching, and image question answering. These tasks help in learning both intra-modality and cross-modality relationships. After fine-tuning from our pretrained parameters, our model achieves the state-of-the-art results on two visual question answering datasets (i.e., VQA and GQA). We also show the generalizability of our pretrained cross-modality model by adapting it to a challenging visual-reasoning task, NLVR 2 , and improve the previous best result by 22% absolute (54% to 76%). Lastly, we demonstrate detailed ablation studies to prove that both our novel model components and pretraining strategies significantly contribute to our strong results; and also present several attention visualizations for the different encoders. 1
translated by 谷歌翻译
在本报告中,我们展示了ICDAR 2021版文档视觉问题挑战的结果。此版本在单个文档VQA和Document Collection VQA上补充了以前的任务,并在Infographics VQA上进行了新引入的。信息图表VQA基于超过5,000个信息图表图像和30,000个问题答案对的新数据集。获胜者方法在Infographics VQA任务中获得了0.6120个ANL,0.7743 anlsl在文档集中的VQA任务和单个文档VQA中的0.8705 ANL中。我们展示了用于每个任务的数据集的摘要,每个提交的方法的描述以及它们的性能的结果和分析。由于还提出了自从第一版DocVQA 2020挑战以来在单个文档VQA上取得的摘要。
translated by 谷歌翻译
每年医生对患者的基于形象的诊断需求越来越大,是最近的人工智能方法可以解决的问题。在这种情况下,我们在医学图像的自动报告领域进行了调查,重点是使用深神经网络的方法,了解:(1)数据集,(2)架构设计,(3)解释性和(4)评估指标。我们的调查确定了有趣的发展,也是留下挑战。其中,目前对生成的报告的评估尤为薄弱,因为它主要依赖于传统的自然语言处理(NLP)指标,这不准确地捕获医疗正确性。
translated by 谷歌翻译
最近,许多研究表明,通过使用多模式的训练预训练目标扩展BERT体系结构,在各种视觉语言多模式任务(例如图像字幕和视觉问题)上进行了令人印象深刻的表现。在这项工作中,我们探讨了医学领域中的一系列多模式表示任务,专门使用放射学图像和非结构化报告。我们提出了医学视觉语言学习者(MEDVILL),该语言学习者采用基于BERT的建筑与一种新型的多模式注意掩盖方案相结合,以最大程度地提高概括性能,以实现视力语言理解任务(诊断分类,医疗图像报告,医学视觉,医疗视觉效果问答)和视觉生成任务(放射学报告生成)。通过统计和严格评估四个下游任务的拟议模型,该模型具有三个X光摄影图像报告数据集(Mimic-CXR,Open-I和VQA-RAD),我们从经验上凭经验证明了MEDVILL的卓越下游任务,包括各种基准,包括任务 - 特定体系结构。源代码可公开可用:https://github.com/supersupermoon/medvill
translated by 谷歌翻译
我们提出了一种用于场景文本视觉问题的新型多模式架构(STVQA),命名为布局感知变压器(LatR)。 STVQA的任务需要模型以推理不同的方式。因此,我们首先调查每种方式的影响,并揭示语言模块的重要性,尤其是在丰富布局信息时。考虑到这一点,我们提出了一种客观预培训计划,只需要文本和空间线索。我们表明,尽管域间隙差距,但仍然对扫描文件进行了对扫描文件的培训方案具有某些优点。扫描的文档易于采购,文本密集并具有各种布局,帮助模型通过捆绑语言和布局信息来学习各种空间线索(例如,下面等等)。与现有方法相比,我们的方法执行无词汇解码,如图所示,概括到超出培训词汇。我们进一步证明Latr改善了对OCR错误的鲁棒性,在STVQA失败的常见原因。另外,通过利用视觉变压器,我们消除了对外部物体检测器的需求。 Latr在多个数据集上赢得最先进的STVQA方法。特别是+ 7.6%的TextVQA,ST-VQA上的10.8%,+ 4.0%在OCR-VQA(所有绝对精度数字)。
translated by 谷歌翻译
近年来,多模态变压器在视觉语言任务中显示出显着进展,例如视觉问题应答(VQA),以相当多的余量优于以前的架构。 VQA的这种改进通常归因于视觉和语言流之间的丰富相互作用。在这项工作中,我们研究了共同关注变压器层在回答问题时帮助网络专注于相关区域的功效。我们使用这些共同关注层中的质询图像注意力分数来生成视觉注意图。我们评估以下关键组分对最先进的VQA模型的视觉注意的影响:(i)对象区域提案数,(ii)言语(POS)标签的问题部分,(iii)问题语义,(iv)共同关注层数,和(v)答案准确性。我们比较神经网络注意力地图对人类注意力地图的定性和定量。我们的研究结果表明,在给出一个问题的情况下,共同关注变压器模块对图像的相关区域至关重要。重要的是,我们观察到问题的语义含义不是驱动视觉关注的,但问题中的特定关键词是。我们的工作揭示了关注变压器层的功能和解释,突出了当前网络中的差距,并指导了同时处理视觉和语言流的未来VQA模型和网络的开发。
translated by 谷歌翻译