设置子模块目标函数的优化问题具有许多现实世界应用。在离散场景中,在可以选择同一项目的情况下,域通过设置到有界整数格的2元素概括。在这项工作中,我们考虑最大化界限整数晶格上的单调子模块功能的问题,受到基数约束。特别是,我们专注于最大化D​​R-SubsoDular函数,即在整数格中定义的函数,该函数展示递减返回属性。给定任何epsilon> 0,我们介绍了一种随机算法的概率保证o(1 - 1 / e-epsilon)近似,使用由Mirzasoleiman等人开发的随机贪婪算法启发的框架。然后,我们表明,在合成DR-IMODOOMULAL功能上,在整数晶格上应用我们的建议算法比替代方案快,包括将目标问题还原到集合域,然后应用于最快的已知的集合子态最大化算法。
translated by 谷歌翻译
Evolutionary algorithms (EAs) are a kind of nature-inspired general-purpose optimization algorithm, and have shown empirically good performance in solving various real-word optimization problems. During the past two decades, promising results on the running time analysis (one essential theoretical aspect) of EAs have been obtained, while most of them focused on isolated combinatorial optimization problems, which do not reflect the general-purpose nature of EAs. To provide a general theoretical explanation of the behavior of EAs, it is desirable to study their performance on general classes of combinatorial optimization problems. To the best of our knowledge, the only result towards this direction is the provably good approximation guarantees of EAs for the problem class of maximizing monotone submodular functions with matroid constraints. The aim of this work is to contribute to this line of research. Considering that many combinatorial optimization problems involve non-monotone or non-submodular objective functions, we study the general problem classes, maximizing submodular functions with/without a size constraint and maximizing monotone approximately submodular functions with a size constraint. We prove that a simple multi-objective EA called GSEMO-C can generally achieve good approximation guarantees in polynomial expected running time.
translated by 谷歌翻译
信号处理和机器学习中的许多问题都可以正面被形式化为弱子模块优化任务。对于此类问题,保证了一种简单的贪婪算法(\ textsc {greedy}),以找到实现目标的解决方案,其中值不到1-e ^ { - 1 / c} $的最佳值,其中$ c $乘法弱潜水解度常数。由于查询大规模系统的高成本,在当代应用中,\ Textsc {贪婪}的复杂性变得令人望而却步。在这项工作中,我们研究了随机采样策略的绩效和复杂性之间的权衡,以减少\ textsc的查询复杂性{greedy}。具体而言,我们通过两个度量来量化统一采样策略对\ textsc {贪婪}的性能的影响:(i)识别最佳子集的概率,(ii)相对于最佳解决方案的次优。后者意味着具有固定采样尺寸的均匀采样策略实现了非平凡的近似因子;但是,我们表明,通过压倒性概率,这些方法无法找到最佳子集。我们的分析表明,通过连续增加搜索空间的大小,可以避免具有固定样本大小的均匀采样策略的失败。建立这种洞察力,我们提出了一种简单的渐进式随机贪婪算法,并研究其近似保证。此外,我们展示了提出的方法在维度减少应用中的提出方法以及用于聚类和对象跟踪的特征选择任务。
translated by 谷歌翻译
我们研究动态算法,以便在$ N $插入和删除流中最大化单调子模块功能的问题。我们显示任何维护$(0.5+ epsilon)$ - 在基数约束下的近似解决方案的算法,对于任何常数$ \ epsilon> 0 $,必须具有$ \ mathit {polynomial} $的摊销查询复杂性$ n $。此外,需要线性摊销查询复杂性,以维持0.584美元 - 批量的解决方案。这与近期[LMNF + 20,MON20]的最近动态算法相比,达到$(0.5- \ epsilon)$ - 近似值,与$ \ mathsf {poly} \ log(n)$摊销查询复杂性。在正面,当流是仅插入的时候,我们在基数约束下的问题和近似的Matroid约束下提供有效的算法,近似保证$ 1-1 / e-\ epsilon $和摊销查询复杂性$ \ smash {o (\ log(k / \ epsilon)/ \ epsilon ^ 2)} $和$ \ smash {k ^ {\ tilde {o}(1 / \ epsilon ^ 2)} \ log n} $,其中$ k $表示基数参数或Matroid的等级。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
在机器学习中最大化的是一项基本任务,在本文中,我们研究了经典的Matroid约束下的删除功能强大版本。在这里,目标是提取数据集的小尺寸摘要,即使在对手删除了一些元素之后,该数据集包含高价值独立集。我们提出了恒定因素近似算法,其空间复杂性取决于矩阵的等级$ k $和已删除元素的数字$ d $。在集中式设置中,我们提出$(4.597+o(\ varepsilon))$ - 近似算法,带有摘要大小$ o(\ frac {k+d} {\ varepsilon^2} \ log \ log \ frac \ frac {k} })$将$(3.582 + o(\ varepsilon))$(k + \ frac {d} {\ varepsilon^2} \ log \ frac {k} {k} {\ varepsilon}) $摘要大小是单调的。在流设置中,我们提供$(9.435 + o(\ varepsilon))$ - 带有摘要大小和内存$ o的近似算法$(k + \ frac {d} {\ varepsilon^2} \ log \ log \ frac {k} {k} {k} {k} {k} {k} { \ varepsilon})$;然后,将近似因子提高到单调盒中的$(5.582+o(\ varepsilon))$。
translated by 谷歌翻译
确定点过程(DPP)的最大后验(MAP)推断对于在许多机器学习应用中选择多种项目至关重要。尽管DPP地图推断是NP-HARD,但贪婪的算法通常会发现高质量的解决方案,许多研究人员已经研究了其有效的实施。一种经典且实用的方法是懒惰的贪婪算法,适用于一般的下函数最大化,而基于Cholesky的最新快速贪婪算法对于DPP MAP推断更有效。本文介绍了如何结合“懒惰”和“快速”的想法,这些思想在文献中被认为是不兼容的。我们懒惰且快速的贪婪算法与当前最好的算法几乎具有相同的时间复杂性,并且在实践中运行速度更快。 “懒惰 +快速”的想法可扩展到其他贪婪型算法。我们还为无约束的DPP地图推断提供了双贪婪算法的快速版本。实验验证了我们加速思想的有效性。
translated by 谷歌翻译
Evolutionary algorithms (EAs) are general-purpose optimization algorithms, inspired by natural evolution. Recent theoretical studies have shown that EAs can achieve good approximation guarantees for solving the problem classes of submodular optimization, which have a wide range of applications, such as maximum coverage, sparse regression, influence maximization, document summarization and sensor placement, just to name a few. Though they have provided some theoretical explanation for the general-purpose nature of EAs, the considered submodular objective functions are defined only over sets or multisets. To complement this line of research, this paper studies the problem class of maximizing monotone submodular functions over sequences, where the objective function depends on the order of items. We prove that for each kind of previously studied monotone submodular objective functions over sequences, i.e., prefix monotone submodular functions, weakly monotone and strongly submodular functions, and DAG monotone submodular functions, a simple multi-objective EA, i.e., GSEMO, can always reach or improve the best known approximation guarantee after running polynomial time in expectation. Note that these best-known approximation guarantees can be obtained only by different greedy-style algorithms before. Empirical studies on various applications, e.g., accomplishing tasks, maximizing information gain, search-and-tracking and recommender systems, show the excellent performance of the GSEMO.
translated by 谷歌翻译
In model selection problems for machine learning, the desire for a well-performing model with meaningful structure is typically expressed through a regularized optimization problem. In many scenarios, however, the meaningful structure is specified in some discrete space, leading to difficult nonconvex optimization problems. In this paper, we connect the model selection problem with structure-promoting regularizers to submodular function minimization with continuous and discrete arguments. In particular, we leverage the theory of submodular functions to identify a class of these problems that can be solved exactly and efficiently with an agnostic combination of discrete and continuous optimization routines. We show how simple continuous or discrete constraints can also be handled for certain problem classes and extend these ideas to a robust optimization framework. We also show how some problems outside of this class can be embedded within the class, further extending the class of problems our framework can accommodate. Finally, we numerically validate our theoretical results with several proof-of-concept examples with synthetic and real-world data, comparing against state-of-the-art algorithms.
translated by 谷歌翻译
在机器学习,游戏理论和控制理论中解决各种应用,极限优化已经是中心。因此,目前的文献主要集中于研究连续结构域中的这些问题,例如,凸凹minalax优化现在在很大程度上被理解。然而,最小的问题远远超出连续域以混合连续离散域或甚至完全离散域。在本文中,我们研究了混合连续离散的最小问题,其中最小化在属于欧几里德空间的连续变量上,最大化是在给定地面集的子集上。我们介绍了凸子蒙皮最小新的类问题,其中物镜相对于连续变量和子模块相对于离散变量凸出。尽管这些问题在机器学习应用中经常出现,但对于如何从算法和理论观点来解决它们的知之甚少。对于此类问题,我们首先表明获得鞍点难以达到任何近似,因此引入了(近)最优性的新概念。然后,我们提供了若干算法程序,用于解决凸且单调 - 子模块硬币问题,并根据我们最佳的概念来表征其收敛率,计算复杂性和最终解决方案的质量。我们所提出的算法迭代并组合离散和连续优化的工具。最后,我们提供了数字实验,以展示我们所用方法的有效性。
translated by 谷歌翻译
Evolutionary algorithms (EAs) have found many successful real-world applications, where the optimization problems are often subject to a wide range of uncertainties. To understand the practical behaviors of EAs theoretically, there are a series of efforts devoted to analyzing the running time of EAs for optimization under uncertainties. Existing studies mainly focus on noisy and dynamic optimization, while another common type of uncertain optimization, i.e., robust optimization, has been rarely touched. In this paper, we analyze the expected running time of the (1+1)-EA solving robust linear optimization problems (i.e., linear problems under robust scenarios) with a cardinality constraint $k$. Two common robust scenarios, i.e., deletion-robust and worst-case, are considered. Particularly, we derive tight ranges of the robust parameter $d$ or budget $k$ allowing the (1+1)-EA to find an optimal solution in polynomial running time, which disclose the potential of EAs for robust optimization.
translated by 谷歌翻译
对于最大化单调的问题,子模块功能相对于基数限制为$ K $ k $ k $ k $ $ n $ n $,我们提供了一种在其经验性能和其上实现最先进的算法理论属性,就适应性复杂性,查询复杂性和近似率而言;也就是说,它获得了高概率,查询复杂度$ O(n)$的期望,适应$ o(\ log(n))$,近似1-1 / e $的近似比。主要算法由可能是独立兴趣的两个组件组装。我们的算法的第一个组件LineArseq,可用作提高许多算法的查询复杂性的预处理算法。此外,LineArseq的变体显示为具有O $ O(n / k))$的自适应复杂性,其小于文献中的任何先前算法的自适应复杂性。第二组件是一个并行阈值处理过程阈值问题,用于添加具有高于恒定阈值的增益的元素。最后,我们展示了我们的主要算法在运行时,自适应轮次,总查询和客观值方面经验胜过,以前的最先进的算法,以六个子模块物理函数快速评估。
translated by 谷歌翻译
单调可行的算法的开发,受基数约束(SMCC)的基本最大化产生了两个单独的研究方向:具有低自适应复杂性的集中算法,需要随机访问整个数据集;并分布式MAPREDUCE(MR)模型算法,这些算法使用少量的MR回合计算。目前,众所周知,没有MR Model算法使用均值的自适应回合,从而限制了其实际性能。我们在分布式设置中研究了SMCC问题,并介绍了三种单独的MR模型算法,这些算法在分布式设置中引入了sublinear适应性。我们的主要算法,Dash实现了$ \ frac {1} {2} {2}(1-1/e- \ varepsilon)$的近似值,而使用一个MR圆形,而其多轮变体元数据启用MR模型算法可以在大型上运行。以前不可能的基数约束。使用一个和$($ \ frac {3} {8} {8} - \ varepsilon $)和($ 1-1/e- \ varepsilon $)的两种附加算法T-DASH和G-DASH提供了改进的比率为($ \ frac {3} {8} - \ varepsilon $) 1/\ Varepsilon)$ MR ROUNDS。我们所有提出的算法都具有肌关系的自适应复杂性,我们提供了广泛的经验证据来确定:仪表率是比最先进的分布式算法快的数量级,同时产生了几乎相同的溶液值;并验证仪表板在集中和分布式数据上获得可行解决方案时的多功能性。
translated by 谷歌翻译
顺序决策问题的目的是设计一种自适应选择一组项目的交互式策略,每个选择都是基于过去的反馈,以最大程度地提高所选项目的预期效用。已经表明,许多现实世界应用的实用程序功能都是自适应的。但是,大多数关于自适应下调优化的现有研究都集中在平均案例上。不幸的是,在最糟糕的案例实现下,具有良好平均表现的政策可能表现较差。在这项研究中,我们建议研究两种自适应下调优化问题的变体,即最坏情况下的自适应下二一个最大化和鲁棒的下二一个最大化。第一个问题旨在找到一项最大化最坏情况的政策,后者旨在找到一项政策(如果有的话),同时可以同时实现接近最佳的平均效用和最差的效用。我们引入了一类新的随机函数,称为\ emph {worst-case subsodular函数}。对于最严重的自适应性次传导性最大化问题,但要受到$ p $系统约束的约束,我们制定了一种自适应的最坏情况贪婪的贪婪政策,该政策实现了$ \ frac {1} {p+1} $近似值案例实用程序如果效用函数是最差的子模型。对于稳健的自适应下调最大化问题,但受到基数约束(分区矩阵约束),如果效用函数既是最坏情况下的casase subsodular and Adaptive subsodular,否 - \ frac {1} {2}}} $(分别$ 1/3 $)在最坏情况下和平均案例设置下同时。我们还描述了我们的理论结果的几种应用,包括池碱积极学习,随机的下套装覆盖和自适应病毒营销。
translated by 谷歌翻译
典型的自适应顺序决策问题的目标是根据一些部分观察来设计一个交互策略,该策略根据一些部分观察来顺序选择一组项目,以最大化预期的实用程序。已经表明,许多实际应用的实用功能,包括基于汇集的主动学习和自适应影响最大化,满足自适应子骨科的特性。然而,大多数关于自适应子模块最大化的研究重点关注完全自适应设置,即,必须等待从\ emph {all}过去选择之前的反馈。虽然这种方法可以充分利用过去过去的反馈,但是与非自适应解决方案相比,完成选择过程可能需要更长的时间来完成选择过程,其中在任何观察发生之前发生所有选择。在本文中,我们探讨了部分自适应子模块最大化的问题,其中允许同时在批处理中进行多种选择并一起观察它们的实现。我们的方法享有适应性的好处,同时减少了从过去选择等待观察的时间。据我们所知,没有结果对于非单调自适应子膜最大化问题的部分适应性政策。我们在基数限制和背包约束下研究了这个问题,并对这两种情况制定了有效和高效的解决方案。我们还分析了批量查询复杂性,即策略所需的批量次数,以便在一些额外的假设下完成选择过程。
translated by 谷歌翻译
由于机器学习,统计和科学的应用,多边缘最佳运输(MOT)引起了极大的兴趣。但是,在大多数应用中,MOT的成功受到缺乏有效算法的严重限制。实际上,MOT一般需要在边际K及其支撑大小n的数量中指数时间n。本文开发了一个关于“结构”在poly(n,k)时间中可溶解的一般理论。我们开发了一个统一的算法框架,用于通过表征不同算法所需的“结构”来解决poly(n,k)时间中的MOT,这是根据双重可行性甲骨文的简单变体所需的。该框架有几个好处。首先,它使我们能够证明当前是最流行的MOT算法的Sinkhorn算法比其他算法要在poly(n,k)时间中求解MOT所需的结构更严格。其次,我们的框架使得为给定的MOT问题开发poly(n,k)时间算法变得更加简单。特别是(大约)解决双重可行性Oracle是必要和足够的 - 这更适合标准算法技术。我们通过为三个通用类成本结构类别的poly(n,k)时间算法开发poly(n,k)时间算法来说明这种易用性:(1)图形结构; (2)设定优化结构; (3)低阶和稀疏结构。对于结构(1),我们恢复了Sindhorn具有poly(n,k)运行时的已知结果;此外,我们为计算精确且稀疏的解决方案提供了第一个poly(n,k)时间算法。对于结构(2) - (3),我们给出了第一个poly(n,k)时间算法,甚至用于近似计算。这三个结构一起涵盖了许多MOT的当前应用。
translated by 谷歌翻译
SemideFinite编程(SDP)是一个统一的框架,可以概括线性编程和四二次二次编程,同时在理论和实践中也产生有效的求解器。但是,当覆盖SDP的约束以在线方式到达时,存在近似最佳解决方案的已知结果。在本文中,我们研究了在线涵盖线性和半决赛程序,其中通过可能错误的预测指标的建议增强了算法。我们表明,如果预测变量是准确的,我们可以有效地绕过这些不可能的结果,并在最佳解决方案(即一致性)上实现恒定因素近似值。另一方面,如果预测变量不准确,在某些技术条件下,我们取得的结果既匹配经典的最佳上限和紧密的下限,则达到恒定因素,即稳健性。更广泛地,我们引入了一个框架,该框架既扩展了(1)由Bamas,Maggiori和Svensson(Neurips 2020)研究的机器学习预测变量增加的在线套装问题,以及(2)在线覆盖SDP问题,由SDP问题发起。 Elad,Kale和Naor(ICALP 2016)。具体而言,我们获得了一般的在线学习算法,用于涵盖具有分数建议和约束的线性程序,并启动学习启发算法以涵盖SDP问题的研究。我们的技术基于Buchbinder和NAOR的原始二次框架(操作研究的数学,34,2009),并且可以进一步调整以处理变量位于有限区域的约束,即框约束。
translated by 谷歌翻译
在本文中,我们研究了经典的少量最大化问题,但在非自适应和适应性环境下都受到群体公平限制。已经表明,许多机器学习应用程序的效用函数,包括数据汇总,影响社交网络中的最大化和个性化建议,都满足了子义的属性。因此,在许多应用程序的核心中可以找到受到各种限制的最大化函数。在高水平上,少量最大化旨在选择一组大多数代表性项目(例如,数据点)。但是,大多数现有算法的设计并未包含公平的约束,从而导致某些特定组的不足或过分代表。这激发了我们研究公平的supsodular最大化问题,我们旨在选择一组项目,以最大化(可能是非单调的)suppodular效用功能,但要受群体公平约束。为此,我们为此问题开发了第一个常数因子近似算法。我们的算法的设计足够强大,可以扩展到更复杂的自适应设置下解决suppodular的最大化问题。此外,我们将研究进一步扩展到整合全球基础性约束。
translated by 谷歌翻译
本文展示了如何适应$ k $ -MEANS问题的几种简单和经典的基于采样的算法,以使用离群值设置。最近,Bhaskara等人。 (Neurips 2019)展示了如何将古典$ K $ -MEANS ++算法适应与异常值的设置。但是,他们的算法需要输出$ o(\ log(k)\ cdot z)$ outiers,其中$ z $是true Outliers的数量,以匹配$ o(\ log k)$ - 近似值的$ k的近似保证$ -Means ++。在本文中,我们以他们的想法为基础,并展示了如何适应几个顺序和分布式的$ k $ - 均值算法,但使用离群值来设置,但具有更强的理论保证:我们的算法输出$(1+ \ VAREPSILON)z $ OUTLIERS Z $ OUTLIERS在实现$ o(1 / \ varepsilon)$ - 近似目标函数的同时。在顺序世界中,我们通过改编Lattanzi和Sohler的最新算法来实现这一目标(ICML 2019)。在分布式设置中,我们适应了Guha等人的简单算法。 (IEEE Trans。知道和数据工程2003)以及Bahmani等人的流行$ K $ -Means $ \ | $。 (PVLDB 2012)。我们技术的理论应用是一种具有运行时间$ \ tilde {o}(nk^2/z)$的算法,假设$ k \ ll z \ ll n $。这与Omacle模型中此问题的$ \ Omega(NK^2/z)$的匹配下限相互补。
translated by 谷歌翻译
The Forster transform is a method of regularizing a dataset by placing it in {\em radial isotropic position} while maintaining some of its essential properties. Forster transforms have played a key role in a diverse range of settings spanning computer science and functional analysis. Prior work had given {\em weakly} polynomial time algorithms for computing Forster transforms, when they exist. Our main result is the first {\em strongly polynomial time} algorithm to compute an approximate Forster transform of a given dataset or certify that no such transformation exists. By leveraging our strongly polynomial Forster algorithm, we obtain the first strongly polynomial time algorithm for {\em distribution-free} PAC learning of halfspaces. This learning result is surprising because {\em proper} PAC learning of halfspaces is {\em equivalent} to linear programming. Our learning approach extends to give a strongly polynomial halfspace learner in the presence of random classification noise and, more generally, Massart noise.
translated by 谷歌翻译