在本文中,我们研究了经典的少量最大化问题,但在非自适应和适应性环境下都受到群体公平限制。已经表明,许多机器学习应用程序的效用函数,包括数据汇总,影响社交网络中的最大化和个性化建议,都满足了子义的属性。因此,在许多应用程序的核心中可以找到受到各种限制的最大化函数。在高水平上,少量最大化旨在选择一组大多数代表性项目(例如,数据点)。但是,大多数现有算法的设计并未包含公平的约束,从而导致某些特定组的不足或过分代表。这激发了我们研究公平的supsodular最大化问题,我们旨在选择一组项目,以最大化(可能是非单调的)suppodular效用功能,但要受群体公平约束。为此,我们为此问题开发了第一个常数因子近似算法。我们的算法的设计足够强大,可以扩展到更复杂的自适应设置下解决suppodular的最大化问题。此外,我们将研究进一步扩展到整合全球基础性约束。
translated by 谷歌翻译
典型的自适应顺序决策问题的目标是根据一些部分观察来设计一个交互策略,该策略根据一些部分观察来顺序选择一组项目,以最大化预期的实用程序。已经表明,许多实际应用的实用功能,包括基于汇集的主动学习和自适应影响最大化,满足自适应子骨科的特性。然而,大多数关于自适应子模块最大化的研究重点关注完全自适应设置,即,必须等待从\ emph {all}过去选择之前的反馈。虽然这种方法可以充分利用过去过去的反馈,但是与非自适应解决方案相比,完成选择过程可能需要更长的时间来完成选择过程,其中在任何观察发生之前发生所有选择。在本文中,我们探讨了部分自适应子模块最大化的问题,其中允许同时在批处理中进行多种选择并一起观察它们的实现。我们的方法享有适应性的好处,同时减少了从过去选择等待观察的时间。据我们所知,没有结果对于非单调自适应子膜最大化问题的部分适应性政策。我们在基数限制和背包约束下研究了这个问题,并对这两种情况制定了有效和高效的解决方案。我们还分析了批量查询复杂性,即策略所需的批量次数,以便在一些额外的假设下完成选择过程。
translated by 谷歌翻译
许多顺序决策问题可以作为自适应的下管最大化问题。但是,该领域中的大多数现有研究都集中在基于池的设置上,在该设置中,人们可以按任何顺序选择项目,而对于基于流的设置,项目以任意顺序到达,并且必须立即确定是否可以立即决定在到达时选择或不选择项目。在本文中,我们介绍了一类新的实用程序功能,即半准时函数。我们开发了一系列有效的算法,以最大程度地提高基于流的设置下的半脉冲下函数。
translated by 谷歌翻译
顺序决策问题的目的是设计一种自适应选择一组项目的交互式策略,每个选择都是基于过去的反馈,以最大程度地提高所选项目的预期效用。已经表明,许多现实世界应用的实用程序功能都是自适应的。但是,大多数关于自适应下调优化的现有研究都集中在平均案例上。不幸的是,在最糟糕的案例实现下,具有良好平均表现的政策可能表现较差。在这项研究中,我们建议研究两种自适应下调优化问题的变体,即最坏情况下的自适应下二一个最大化和鲁棒的下二一个最大化。第一个问题旨在找到一项最大化最坏情况的政策,后者旨在找到一项政策(如果有的话),同时可以同时实现接近最佳的平均效用和最差的效用。我们引入了一类新的随机函数,称为\ emph {worst-case subsodular函数}。对于最严重的自适应性次传导性最大化问题,但要受到$ p $系统约束的约束,我们制定了一种自适应的最坏情况贪婪的贪婪政策,该政策实现了$ \ frac {1} {p+1} $近似值案例实用程序如果效用函数是最差的子模型。对于稳健的自适应下调最大化问题,但受到基数约束(分区矩阵约束),如果效用函数既是最坏情况下的casase subsodular and Adaptive subsodular,否 - \ frac {1} {2}}} $(分别$ 1/3 $)在最坏情况下和平均案例设置下同时。我们还描述了我们的理论结果的几种应用,包括池碱积极学习,随机的下套装覆盖和自适应病毒营销。
translated by 谷歌翻译
许多顺序决策问题,包括基于池的主动学习和自适应病毒营销,可以作为适应性的下调性最大化问题。关于自适应下调优化的大多数研究都集中在单调病例或非单调性病例上。具体而言,如果实用程序函数是单调的,并且自适应子管道,则\ cite {golovin2011Adaptive}制定了一种贪婪的策略,该策略可以达到$(1-1/e)$近似值,但要受到基数约束。如果实用程序函数是非单调性的,并且自适应子模块,则\ cite {tang2021beyond}表明,随机贪婪的策略达到了$ 1/e $ $ $的近似比,但受到基数约束。在这项工作中,我们旨在通过研究部分超声酮自适应下调最大化问题来概括上述结果。为此,我们介绍了[0,1] $中自适应单调性比率$ m \的表示法,以测量功能的单调性程度。我们的主要结果是表明,如果实用程序功能为$ M $ - 适应性单调和自适应子管道。值得注意的是,当$ m = 0 $和$ m = 1 $时,此结果将恢复上述$(1-1/e)$和$ 1/e $的近似值。我们进一步扩展了结果,以考虑背包约束。我们表明,如果实用程序功能为$ M $ $ - 适应性单调和自适应子模型,则基于抽样的策略的近似值为$(M+1)/10 $。我们结果的一个重要含义是,即使对于非马可分子实用程序函数,如果此函数与单调函数``clote'',我们仍然可以达到接近$(1-1/e)$的近似值。对于许多机器学习应用程序,其实用程序功能几乎是自适应单调的,这会改善性能界限。
translated by 谷歌翻译
在本文中,我们研究了具有国家依赖的成本的受限随机潜水区最大化问题。我们的问题的输入是从已知概率分布中得出的状态(即,项目的边际贡献和项目成本)的一组项目。知道项目的实现状态的唯一方法是选择该项目。我们考虑两个约束,即,\ ich {内}和\ \ ich {super}约束。回想一下,每个项目都有一个状态相关的成本,并且内部约束指出所有所选项目的总\ emph {实现}成本不得超过预算。因此,内部约束是具有国家依赖的。另一方面,外部约束是与状态无关的。它可以表示为无论其状态如何,都可以作为一个向下封闭的选定项目系列。我们的目标是最大限度地提高内部和外部限制的目标函数。在较大的成本表明“效用”较大的假设下,我们向这个问题提出了恒定的近似解决方案。
translated by 谷歌翻译
在大型和快速增长的数据上运行机器学习算法通常是计算昂贵的,减少数据集大小的一个常见技巧,从而降低了机器学习算法的计算成本,是\ EMPH {概率采样}。它通过从具有已知概率的原始数据集中的每个数据点包括来自原始数据的每个数据点来创建采样的数据集。虽然在减少数据集上运行机器学习算法的好处是显而易见的,但一个主要问题是,在使用完整数据集时,从样本获得的解决方案的性能可能比最佳解决方案的性能更差。在本文中,我们在自适应子骨析最大化的背景下检查由概率采样引起的性能损失。我们考虑一个简单的概率采样方法,它在[0,1] $中选择概率$ r \的每个数据点。如果我们设置采样率$ r = 1 $,我们的问题会减少基于原始完整数据集的解决方案。我们将采样间隙定义为从完整数据集获得的最佳解决方案之间的最大比率和从独立系统获得的样本获得的最佳解决方案。 %它捕获了由概率采样引起的最佳解决方案的性能损失。我们的主要贡献是表明,如果实用程序函数是policywise子模块,那么对于给定的采样率$ r $,采样差距是上限和下限的1美元/ r $。我们的结果立即含义是,如果我们可以基于采样的数据集找到$ \ alpha $-uppatimation解决方案(以$ r $以$ r $上采样),那么该解决方案实现了$ \ alpha r $近似率使用完整数据集时的最佳解决方案。
translated by 谷歌翻译
在本文中,我们研究了具有国家依赖的成本和拒绝的新随机潜水柱最大化问题。我们的问题的输入是预算约束$ B $,以及一组项目(即项目的边际贡献和项目成本)的一组项目是从已知概率分布中汲取的。知道项目的实现状态的唯一方法是探测该项目。我们允许拒绝,即在探测项目并了解其实际状态后,我们必须立即决定是否将该项目添加到我们的解决方案中。我们的目标是顺序探测/选择最优秀的一组项目,以预算限制在所选项目的总成本上。我们对此问题提出了恒定的近似解决方案。我们表明我们的解决方案可以扩展到在线设置。
translated by 谷歌翻译
我们考虑自适应 - 调节功能的最低成本覆盖率的问题,并提供4(ln Q+1) - approximation算法,其中Q是目标值。该结合几乎是最好的,因为该问题不能接受比LN Q更好的近似值(除非p = np)。我们的结果是该问题的第一个O(LN Q) - Approximation算法。以前,o(ln q)近似算法仅假设独立项目或单位成本项目是已知的。此外,我们的结果很容易扩展到想要同时覆盖多个自适应 - 调节函数的设置:我们获得了此概括的第一个近似算法。
translated by 谷歌翻译
在机器学习中最大化的是一项基本任务,在本文中,我们研究了经典的Matroid约束下的删除功能强大版本。在这里,目标是提取数据集的小尺寸摘要,即使在对手删除了一些元素之后,该数据集包含高价值独立集。我们提出了恒定因素近似算法,其空间复杂性取决于矩阵的等级$ k $和已删除元素的数字$ d $。在集中式设置中,我们提出$(4.597+o(\ varepsilon))$ - 近似算法,带有摘要大小$ o(\ frac {k+d} {\ varepsilon^2} \ log \ log \ frac \ frac {k} })$将$(3.582 + o(\ varepsilon))$(k + \ frac {d} {\ varepsilon^2} \ log \ frac {k} {k} {\ varepsilon}) $摘要大小是单调的。在流设置中,我们提供$(9.435 + o(\ varepsilon))$ - 带有摘要大小和内存$ o的近似算法$(k + \ frac {d} {\ varepsilon^2} \ log \ log \ frac {k} {k} {k} {k} {k} {k} { \ varepsilon})$;然后,将近似因子提高到单调盒中的$(5.582+o(\ varepsilon))$。
translated by 谷歌翻译
我们研究动态算法,以便在$ N $插入和删除流中最大化单调子模块功能的问题。我们显示任何维护$(0.5+ epsilon)$ - 在基数约束下的近似解决方案的算法,对于任何常数$ \ epsilon> 0 $,必须具有$ \ mathit {polynomial} $的摊销查询复杂性$ n $。此外,需要线性摊销查询复杂性,以维持0.584美元 - 批量的解决方案。这与近期[LMNF + 20,MON20]的最近动态算法相比,达到$(0.5- \ epsilon)$ - 近似值,与$ \ mathsf {poly} \ log(n)$摊销查询复杂性。在正面,当流是仅插入的时候,我们在基数约束下的问题和近似的Matroid约束下提供有效的算法,近似保证$ 1-1 / e-\ epsilon $和摊销查询复杂性$ \ smash {o (\ log(k / \ epsilon)/ \ epsilon ^ 2)} $和$ \ smash {k ^ {\ tilde {o}(1 / \ epsilon ^ 2)} \ log n} $,其中$ k $表示基数参数或Matroid的等级。
translated by 谷歌翻译
Arthur和Vassilvitskii的著名$ K $ -MEANS ++算法[SODA 2007]是解决实践中$ K $ - 英镑问题的最流行方式。该算法非常简单:它以随机的方式均匀地对第一个中心进行采样,然后始终将每个$ K-1 $中心的中心取样与迄今为止最接近最接近中心的平方距离成比例。之后,运行了劳埃德的迭代算法。已知$ k $ -Means ++算法可以返回预期的$ \ theta(\ log K)$近似解决方案。在他们的开创性工作中,Arthur和Vassilvitskii [Soda 2007]询问了其以下\ emph {greedy}的保证:在每一步中,我们采样了$ \ ell $候选中心,而不是一个,然后选择最小化新的中心成本。这也是$ k $ -Means ++在例如中实现的方式。流行的Scikit-Learn库[Pedregosa等人; JMLR 2011]。我们为贪婪的$ k $ -Means ++提供几乎匹配的下限和上限:我们证明它是$ o(\ ell^3 \ log^3 k)$ - 近似算法。另一方面,我们证明了$ \ omega的下限(\ ell^3 \ log^3 k / \ log^2(\ ell \ log k))$。以前,只有$ \ omega(\ ell \ log k)$下限是已知的[bhattacharya,eube,r \“ ogllin,schmidt; esa 2020),并且没有已知的上限。
translated by 谷歌翻译
我们研究在线交互式强盗设置中的非模块化功能。我们是受到某些元素之间自然互补性的应用程序的动机:这仅使用只能代表元素之间竞争力的下函数来表达这一点。我们通过两种方式扩展了纯粹的下二次方法。首先,我们假设该物镜可以分解为单调下模量和超模块函数的总和,称为BP物镜。在这里,互补性自然是由超模型成分建模的。我们开发了UCB风格的算法,在每一轮比赛中,在采取行动以平衡对未知目标(探索)和选择似乎有希望的行动(剥削)的行动之间揭示的嘈杂收益。根据全知识的贪婪基线来定义遗憾和超模块化曲率,我们表明该算法最多可以在$ o(\ sqrt {t})$ hore $ t $ t $ t $ the $ t $ t $ the $ t $ t $ the $ the。其次,对于那些不承认BP结构的功能,我们提供了类似的遗憾保证,从其表现比率角度来看。这适用于几乎但不完全是子模型的功能。我们在数值上研究了Movielens数据集上电影推荐的任务,并选择用于分类的培训子集。通过这些示例,我们证明了该算法的性能以及将这些问题视为单次生管的缺点。
translated by 谷歌翻译
在将项目分配给平台的情况下,我们在匹配中解决了组和个人公平限制。每个项目都属于某些组,并且对平台有偏好顺序。每个平台通过指定可以与每个组匹配的项目数量的上限和下限来实施组公平性。可能有多种最佳解决方案可以满足群体的公平约束。为了实现个人公平,我们介绍了“概率个人公平”,其目标是计算“集体公平”匹配的分布,以便每个项目都有合理的可能性,可以在其最佳选择中与平台匹配。如果每个项目恰好属于一个组,我们提供了一种多项式时间算法,该算法可以计算概率单独的公平分布,而在组公平匹配中。当项目可以属于多个组,并且将组公平约束指定为仅上限时,我们将相同的算法重新算法以实现三种不同的多项式时间近似算法。
translated by 谷歌翻译
我们介绍了$(p,q)$ - 公平集群问题。在这个问题中,我们给出了一组点数$ p $和不同重量函数的集合$ w $。我们想找到一个群集,最小化$ \ ell_q $ -norm的$ \ ell_p $-norm的$ \ ell_p $ -norms的$ p $从中心。这概括了各种聚类问题,包括社会博览会$ k $ -Median和$ k $ - emeans,并且与其他问题紧密相连,如Densest $ K $ -subgraph和Min $ K $ -Union。我们利用凸编程技术来估计$(p,q)$ - 为$ p $和$ q $的不同价值观达到公平的聚类问题。当$ p \ geq q $时,我们得到$ o(k ^ {(pq)/(2pq)})$,它几乎匹配$ k ^ {\ omega((pq)/(pq))} $低于基于Min $ K $ -Union和其他问题的猜想硬度的束缚。当$ q \ geq p $时,我们得到一个近似,它与界限$ p,q $的输入的大小无关,也与最近的$ o相匹配((\ log n /(\ log \ log n)) ^ {1 / p})$ - $(p,\ infty)$ - makarychev和vakilian(colt 2021)的公平聚类。
translated by 谷歌翻译
在线学习通常需要探索以最大程度地提高长期奖励,但这是以短期“遗憾”为代价的。我们研究如何在多个小组之间分担这种探索成本。例如,在临床试验环境中,分配了亚最佳治疗的患者有效地产生了勘探成本。当患者根据种族或年龄与自然群体相关联时,自然要问任何单一群体所承担的探索成本是否“公平”。如此有动力,我们介绍了“分组”的强盗模型。我们利用公理讨价还价的理论,尤其是纳什议价解决方案,以形式化可能构成跨群体勘探成本的公平分裂的方式。一方面,我们表明,任何遗憾的政策都引起了最不公平的结果:此类政策将在可能的情况下传递最“处于弱势”的群体。更具建设性的方式,我们得出了最佳公平且同时享受“公平价格”的政策。我们通过对华法林剂量的上下文匪徒进行案例研究来说明我们的算法框架的相对优点,我们关注多个种族和年龄段的探索成本。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
The fair-ranking problem, which asks to rank a given set of items to maximize utility subject to group fairness constraints, has received attention in the fairness, information retrieval, and machine learning literature. Recent works, however, observe that errors in socially-salient (including protected) attributes of items can significantly undermine fairness guarantees of existing fair-ranking algorithms and raise the problem of mitigating the effect of such errors. We study the fair-ranking problem under a model where socially-salient attributes of items are randomly and independently perturbed. We present a fair-ranking framework that incorporates group fairness requirements along with probabilistic information about perturbations in socially-salient attributes. We provide provable guarantees on the fairness and utility attainable by our framework and show that it is information-theoretically impossible to significantly beat these guarantees. Our framework works for multiple non-disjoint attributes and a general class of fairness constraints that includes proportional and equal representation. Empirically, we observe that, compared to baselines, our algorithm outputs rankings with higher fairness, and has a similar or better fairness-utility trade-off compared to baselines.
translated by 谷歌翻译
Omnipredictors(Gopalan,Kalai,Reingold,Sharan和Wieder ITCS 2021)的概念提出了一种新的损失最小化范式。与损失损失$ c $相比,无需基于已知的损失功能学习预测指标,而是可以轻松地进行后处理以最大程度地减少任何丰富的损失功能家族。已经表明,这种杂手已经存在,并暗示(对于所有凸和Lipschitz损失函数),通过算法公平文献的多核概念的概念。然而,通常情况下,所选的动作必须遵守一些其他约束(例如能力或奇偶校验约束)。总体而言,全能器的原始概念并不适用于这种良好动机和大量研究的损失最小化的背景。在本文中,我们介绍了综合器,以进行约束优化并研究其复杂性和含义。我们介绍的概念使学习者不知道后来将分配的损失函数以及后来将施加的约束,只要已知用于定义这些约束的亚群的范围。该论文显示了如何依靠适当的多核变体获得限制优化问题的全能器。对于一些有趣的约束和一般损失函数以及一般约束和一些有趣的损失函数,我们显示了如何通过多核的变体隐含的,该变体的复杂性与标准的多核电相似。我们证明,在一般情况下,标准的数学启动不足,表明全能器是通过相对于包含$ c $中所有级别假设集的类的多核算来暗示的。我们还研究了约束是群体公平概念时的含义。
translated by 谷歌翻译
在招聘,晋升和大学录取等选择过程中,众所周知,候选人的种族,性别或性取向等社会质量属性的隐性偏见会造成持久的不平等,并减少决策者的总效用。已经提出了诸如鲁尼规则及其概括之类的干预措施,这些干预措施要求决策者至少选择每个受影响组的指定数量的个体,以减轻隐性偏见在选择中的不利影响。最近的工作已经确定,在每个人最多属于一个受影响的群体的情况下,这种较低的约束对于改善总效用可能非常有效。但是,在某些情况下,个人可能属于多个受影响的群体,因此,由于这种交叉性,面临更大的隐含偏见。我们考虑独立绘制的实用程序,并表明在相交的情况下,上述非交流约束只能在没有隐性偏见的情况下恢复可实现的总效用的一部分。另一方面,我们表明,如果一个人在交叉点上包含适当的下限约束,那么在没有隐式偏见的情况下,几乎所有实用程序都可以恢复。因此,相交的约束可以比减少尺寸的非相互作用方法可提供显着优势,以减少不平等。
translated by 谷歌翻译