Antimicrobial resistance is one of the biggest health problem, especially in the current period of COVID-19 pandemic. Due to the unique membrane-destruction bactericidal mechanism, antimicrobial peptide-mimetic copolymers are paid more attention and it is urgent to find more potential candidates with broad-spectrum antibacterial efficacy and low toxicity. Artificial intelligence has shown significant performance on small molecule or biotech drugs, however, the higher-dimension of polymer space and the limited experimental data restrict the application of existing methods on copolymer design. Herein, we develop a universal random copolymer inverse design system via multi-model copolymer representation learning, knowledge distillation and reinforcement learning. Our system realize a high-precision antimicrobial activity prediction with few-shot data by extracting various chemical information from multi-modal copolymer representations. By pre-training a scaffold-decorator generative model via knowledge distillation, copolymer space are greatly contracted to the near space of existing data for exploration. Thus, our reinforcement learning algorithm can be adaptive for customized generation on specific scaffolds and requirements on property or structures. We apply our system on collected antimicrobial peptide-mimetic copolymers data, and we discover candidate copolymers with desired properties.
translated by 谷歌翻译
人工智能(AI)在过去十年中一直在改变药物发现的实践。各种AI技术已在广泛的应用中使用,例如虚拟筛选和药物设计。在本调查中,我们首先概述了药物发现,并讨论了相关的应用,可以减少到两个主要任务,即分子性质预测和分子产生。然后,我们讨论常见的数据资源,分子表示和基准平台。此外,为了总结AI在药物发现中的进展情况,我们介绍了在调查的论文中包括模型架构和学习范式的相关AI技术。我们预计本调查将作为有兴趣在人工智能和药物发现界面工作的研究人员的指南。我们还提供了GitHub存储库(HTTPS:///github.com/dengjianyuan/survey_survey_au_drug_discovery),其中包含文件和代码,如适用,作为定期更新的学习资源。
translated by 谷歌翻译
In this work, we propose MEDICO, a Multi-viEw Deep generative model for molecule generation, structural optimization, and the SARS-CoV-2 Inhibitor disCOvery. To the best of our knowledge, MEDICO is the first-of-this-kind graph generative model that can generate molecular graphs similar to the structure of targeted molecules, with a multi-view representation learning framework to sufficiently and adaptively learn comprehensive structural semantics from targeted molecular topology and geometry. We show that our MEDICO significantly outperforms the state-of-the-art methods in generating valid, unique, and novel molecules under benchmarking comparisons. In particular, we showcase the multi-view deep learning model enables us to generate not only the molecules structurally similar to the targeted molecules but also the molecules with desired chemical properties, demonstrating the strong capability of our model in exploring the chemical space deeply. Moreover, case study results on targeted molecule generation for the SARS-CoV-2 main protease (Mpro) show that by integrating molecule docking into our model as chemical priori, we successfully generate new small molecules with desired drug-like properties for the Mpro, potentially accelerating the de novo design of Covid-19 drugs. Further, we apply MEDICO to the structural optimization of three well-known Mpro inhibitors (N3, 11a, and GC376) and achieve ~88% improvement in their binding affinity to Mpro, demonstrating the application value of our model for the development of therapeutics for SARS-CoV-2 infection.
translated by 谷歌翻译
在药物发现中,具有所需生物活性的新分子的合理设计是一项至关重要但具有挑战性的任务,尤其是在治疗新的靶家庭或研究靶标时。在这里,我们提出了PGMG,这是一种用于生物活化分子产生的药效团的深度学习方法。PGMG通过药理的指导提供了一种灵活的策略,以使用训练有素的变异自动编码器在各种情况下生成具有结构多样性的生物活性分子。我们表明,PGMG可以在给定药效团模型的情况下生成匹配的分子,同时保持高度的有效性,独特性和新颖性。在案例研究中,我们证明了PGMG在基于配体和基于结构的药物从头设计以及铅优化方案中生成生物活性分子的应用。总体而言,PGMG的灵活性和有效性使其成为加速药物发现过程的有用工具。
translated by 谷歌翻译
促性腺营养蛋白释放激素受体(GNRH1R)是治疗子宫疾病的有前途的治疗靶标。迄今为止,在临床研究中可以使用几个GNRH1R拮抗剂,而不满足多个财产约束。为了填补这一空白,我们旨在开发一个基于学习的框架,以促进有效,有效地发现具有理想特性的新的口服小型分子药物靶向GNRH1R。在目前的工作中,首先通过充分利用已知活性化合物和靶蛋白的结构的信息,首先提出了配体和结构组合模型,即LS-Molgen,首先提出了分子生成的方法,该信息通过其出色的性能证明了这一点。比分别基于配体或结构方法。然后,进行了A中的计算机筛选,包括活性预测,ADMET评估,分子对接和FEP计算,其中约30,000个生成的新型分子被缩小到8,以进行实验合成和验证。体外和体内实验表明,其中三个表现出有效的抑制活性(化合物5 IC50 = 0.856 nm,化合物6 IC50 = 0.901 nm,化合物7 IC50 = 2.54 nm对GNRH1R,并且化合物5在基本PK属性中表现良好例如半衰期,口服生物利用度和PPB等。我们认为,提议的配体和结构组合结合的分子生成模型和整个计算机辅助工作流程可能会扩展到从头开始的类似任务或铅优化的类似任务。
translated by 谷歌翻译
虽然最近在许多科学领域都变得无处不在,但对其评估的关注较少。对于分子生成模型,最先进的是孤立或与其输入有关的输出。但是,它们的生物学和功能特性(例如配体 - 靶标相互作用)尚未得到解决。在这项研究中,提出了一种新型的生物学启发的基准,用于评估分子生成模型。具体而言,设计了三个不同的参考数据集,并引入了与药物发现过程直接相关的一组指标。特别是我们提出了一个娱乐指标,将药物目标亲和力预测和分子对接应用作为评估生成产量的互补技术。虽然所有三个指标均在测试的生成模型中均表现出一致的结果,但对药物目标亲和力结合和分子对接分数进行了更详细的比较,表明单峰预测器可能会导致关于目标结合在分子水平和多模式方法的错误结论,而多模式的方法是错误的结论。因此优选。该框架的关键优点是,它通过明确关注配体 - 靶标相互作用,将先前的物理化学域知识纳入基准测试过程,从而创建了一种高效的工具,不仅用于评估分子生成型输出,而且还用于丰富富含分子生成的输出。一般而言,药物发现过程。
translated by 谷歌翻译
需要产生具有所需特性的有效分子的分子产生是基本但具有挑战性的任务。近年来,目睹了原子级自动回归模型的快速发展,这通常构造在添加原子级节点和边缘的顺序动作之后的图表。然而,这些原子级模型忽略了高频子结构,其不仅捕获分子中原子组合的规律而且通常与所需的化学性质相关,因此可以是用于产生高质量分子的次优。在本文中,我们提出了一种方法来自动发现这种常见的子结构,从给定的分子图中呼叫图形件。我们还提出了一种基于图形件产生分子图的图片变形AutoEncoder(GP-VAE)。实验表明,我们的GP-VAE模型不仅可以实现更好的性能,而不是用于分发 - 学习,属性优化和约束性能优化任务,但也是计算效率的最先进的基线。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
药物发现对于保护人免受疾病至关重要。基于目标的筛查是过去几十年来开发新药的最流行方法之一。该方法有效地筛选了候选药物在体外抑制靶蛋白,但由于体内所选药物的活性不足,它通常失败。需要准确的计算方法来弥合此差距。在这里,我们提出了一个新的图形多任务深度学习模型,以识别具有目标抑制性和细胞活性(matic)特性的化合物。在经过精心策划的SARS-COV-2数据集中,提出的Matic模型显示了与传统方法相比,在筛选体内有效化合物方面的优点。接下来,我们探索了模型的解释性,发现目标抑制(体外)或细胞活性(体内)任务的学习特征与分子属性相关性和原子功能专注不同。基于这些发现,我们利用了基于蒙特卡洛的增强性学习生成模型来生成具有体外和体内功效的新型多毛皮化合物,从而弥合了基于靶基于靶基于靶标的药物和基于细胞的药物发现之间的差距。
translated by 谷歌翻译
与靶蛋白具有高结合亲和力的药物样分子的产生仍然是药物发现中的一项困难和资源密集型任务。现有的方法主要采用强化学习,马尔可夫采样或以高斯过程为指导的深层生成模型,在生成具有高结合亲和力的分子时,通过基于计算量的物理学方法计算出的高结合亲和力。我们提出了对分子(豪华轿车)的潜在构成主义,它通过类似于Inceptionism的技术显着加速了分子的产生。豪华轿车采用序列的两个神经网络采用变异自动编码器生成的潜在空间和性质预测,从而使基于梯度的分子特性更快地基于梯度的反相比。综合实验表明,豪华轿车在基准任务上具有竞争力,并且在产生具有高结合亲和力的类似药物的化合物的新任务上,其最先进的技术表现出了最先进的技术,可针对两个蛋白质靶标达到纳摩尔范围。我们通过对绝对结合能的基于更准确的基于分子动力学的计算来证实这些基于对接的结果,并表明我们生成的类似药物的化合物之一的预测$ k_d $(结合亲和力的量度)为$ 6 \ cdot 10^ {-14} $ m针对人类雌激素受体,远远超出了典型的早期药物候选物和大多数FDA批准的药物的亲和力。代码可从https://github.com/rose-stl-lab/limo获得。
translated by 谷歌翻译
自我监督的神经语言模型最近在有机分子和蛋白质序列的生成设计中发现了广泛的应用,以及用于下游结构分类和功能预测的表示学习。但是,大多数现有的分子设计深度学习模型通常都需要一个大数据集并具有黑盒架构,这使得很难解释其设计逻辑。在这里,我们提出了生成分子变压器(GMTRANSFORMER),这是一种用于分子生成设计的概率神经网络模型。我们的模型建立在最初用于文本处理的空白填充语言模型上,该模型在学习具有高质量生成,可解释性和数据效率的“分子语法”方面具有独特的优势。与其他基线相比,我们的模型在摩西数据集上的基准测试后获得了高新颖性和SCAF。概率生成步骤具有修补分子设计的潜力,因为它们有能力推荐如何通过学习的隐式分子化学指导,并通过解释来修饰现有分子。可以在https://github.com/usccolumbia/gmtransformer上自由访问源代码和数据集
translated by 谷歌翻译
Recently, deep learning approaches have been extensively studied for various problems in chemistry, such as property prediction, virtual screening, de novo molecule design, etc. Despite the impressive successes, separately designed networks for specific tasks are usually required for end-to-end training, so it is often difficult to acquire a unified principle to synergistically combine existing models and training datasets for novel tasks. To address this, here we present a novel multimodal chemical foundation model that can be used for various downstream tasks that require a simultaneous understanding of structure and property. Specifically, inspired by recent advances in pre-trained multi-modal foundation models such as Vision-Language Pretrained models (VLP), we proposed a novel structure-property multi-modal (SPMM) foundation model using the dual-stream transformer with X-shape attention, so that it can align the molecule structure and the chemical properties in a common embedding space. Thanks to the outstanding structure-property unimodal representation, experimental results confirm that SPMM can simultaneously perform molecule generation, property prediction, classification, reaction prediction, etc., which was previously not possible with a single architecture.
translated by 谷歌翻译
Machine learning methods have been used to accelerate the molecule optimization process. However, efficient search for optimized molecules satisfying several properties with scarce labeled data remains a challenge for machine learning molecule optimization. In this study, we propose MOMO, a multi-objective molecule optimization framework to address the challenge by combining learning of chemical knowledge with Pareto-based multi-objective evolutionary search. To learn chemistry, it employs a self-supervised codec to construct an implicit chemical space and acquire the continues representation of molecules. To explore the established chemical space, MOMO uses multi-objective evolution to comprehensively and efficiently search for similar molecules with multiple desirable properties. We demonstrate the high performance of MOMO on four multi-objective property and similarity optimization tasks, and illustrate the search capability of MOMO through case studies. Remarkably, our approach significantly outperforms previous approaches in optimizing three objectives simultaneously. The results show the optimization capability of MOMO, suggesting to improve the success rate of lead molecule optimization.
translated by 谷歌翻译
在药物发现中,分子优化是在所需药物性质方面将药物候选改变为更好的阶梯。随着近期人工智能的进展,传统上的体外过程越来越促进了Silico方法。我们以硅方法提出了一种创新的,以通过深生成模型制定分子并制定问题,以便产生优化的分子图。我们的生成模型遵循基于片段的药物设计的关键思想,并通过修改其小碎片来优化分子。我们的模型了解如何识别待优化的碎片以及如何通过学习具有良好和不良性质的分子的差异来修改此类碎片。在优化新分子时,我们的模型将学习信号应用于在片段的预测位置解码优化的片段。我们还将多个这样的模型构造成管道,使得管道中的每个模型能够优化一个片段,因此整个流水线能够在需要时改变多个分子片段。我们将我们的模型与基准数据集的其他最先进的方法进行比较,并证明我们的方法在中等分子相似度约束下具有超过80%的性质改善,在高分子相似度约束下具有超过80%的财产改善。 。
translated by 谷歌翻译
人工智能(AI)已被广泛应用于药物发现中,其主要任务是分子财产预测。尽管分子表示学习中AI技术的繁荣,但尚未仔细检查分子性质预测的一些关键方面。在这项研究中,我们对三个代表性模型,即随机森林,莫尔伯特和格罗弗进行了系统比较,该模型分别利用了三个主要的分子表示,扩展连接的指纹,微笑的字符串和分子图。值得注意的是,莫尔伯特(Molbert)和格罗弗(Grover)以自我监督的方式在大规模的无标记分子库中进行了预定。除了常用的分子基准数据集外,我们还组装了一套与阿片类药物相关的数据集进行下游预测评估。我们首先对标签分布和结构分析进行了数据集分析;我们还检查了阿片类药物相关数据集中的活动悬崖问题。然后,我们培训了4,320个预测模型,并评估了学习表示的有用性。此外,我们通过研究统计测试,评估指标和任务设置的效果来探索模型评估。最后,我们将化学空间的概括分解为施加间和支柱内的概括,并测量了预测性能,以评估两种设置下模型的普遍性。通过采取这种喘息,我们反映了分子财产预测的基本关键方面,希望在该领域带来更好的AI技术的意识。
translated by 谷歌翻译
Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make datadriven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.
translated by 谷歌翻译
Models based on machine learning can enable accurate and fast molecular property predictions, which is of interest in drug discovery and material design. Various supervised machine learning models have demonstrated promising performance, but the vast chemical space and the limited availability of property labels make supervised learning challenging. Recently, unsupervised transformer-based language models pretrained on a large unlabelled corpus have produced state-of-the-art results in many downstream natural language processing tasks. Inspired by this development, we present molecular embeddings obtained by training an efficient transformer encoder model, MoLFormer, which uses rotary positional embeddings. This model employs a linear attention mechanism, coupled with highly distributed training, on SMILES sequences of 1.1 billion unlabelled molecules from the PubChem and ZINC datasets. We show that the learned molecular representation outperforms existing baselines, including supervised and self-supervised graph neural networks and language models, on several downstream tasks from ten benchmark datasets. They perform competitively on two others. Further analyses, specifically through the lens of attention, demonstrate that MoLFormer trained on chemical SMILES indeed learns the spatial relationships between atoms within a molecule. These results provide encouraging evidence that large-scale molecular language models can capture sufficient chemical and structural information to predict various distinct molecular properties, including quantum-chemical properties.
translated by 谷歌翻译
对聚合物性质的准确预测在聚合物的开发和设计中具有重要意义。通常,需要进行昂贵且耗时的实验或模拟来评估聚合物的功能。最近,配备了注意力机制的变压器模型在各种自然语言处理任务中表现出卓越的性能。但是,这种方法尚未在聚合物科学中进行研究。在此,我们报告了TransPolymer,这是一种基于变压器的语言模型,用于聚合物属性预测。由于我们提出的具有化学意识的聚合物令牌,转染剂可以直接从聚合物序列中学习表示。该模型通过在大型未标记数据集上进行预处理,从而学习表达性表示,然后在下游数据集上进行有关各种聚合物属性的模型。转聚合物在所有八个数据集中都能达到卓越的性能,并且在大多数下游任务上都显着超过其他基线。此外,预处理的转聚合物对监督转聚合物和其他语言模型的改善增强了对代表学习中大型未标记数据预处理的显着好处。实验结果进一步证明了注意机制在理解聚合物序列中的重要作用。我们强调该模型是一种有前途的计算工具,用于促进数据科学视图中的结构 - 质谱关系。
translated by 谷歌翻译
The accurate prediction of physicochemical properties of chemical compounds in mixtures (such as the activity coefficient at infinite dilution $\gamma_{ij}^\infty$) is essential for developing novel and more sustainable chemical processes. In this work, we analyze the performance of previously-proposed GNN-based models for the prediction of $\gamma_{ij}^\infty$, and compare them with several mechanistic models in a series of 9 isothermal studies. Moreover, we develop the Gibbs-Helmholtz Graph Neural Network (GH-GNN) model for predicting $\ln \gamma_{ij}^\infty$ of molecular systems at different temperatures. Our method combines the simplicity of a Gibbs-Helmholtz-derived expression with a series of graph neural networks that incorporate explicit molecular and intermolecular descriptors for capturing dispersion and hydrogen bonding effects. We have trained this model using experimentally determined $\ln \gamma_{ij}^\infty$ data of 40,219 binary-systems involving 1032 solutes and 866 solvents, overall showing superior performance compared to the popular UNIFAC-Dortmund model. We analyze the performance of GH-GNN for continuous and discrete inter/extrapolation and give indications for the model's applicability domain and expected accuracy. In general, GH-GNN is able to produce accurate predictions for extrapolated binary-systems if at least 25 systems with the same combination of solute-solvent chemical classes are contained in the training set and a similarity indicator above 0.35 is also present. This model and its applicability domain recommendations have been made open-source at https://github.com/edgarsmdn/GH-GNN.
translated by 谷歌翻译
反转合是药物发现的主要任务。通过许多现有方法,它被称为生成图的问题。具体而言,这些方法首先识别反应中心,并相应地打破靶分子以生成合成子。反应物是通过顺序添加到合成图或直接添加正确的离开组来生成反应物。但是,两种策略都遭受了添加原子以来会导致长期的预测顺序,从而增加了产生难度,同时添加离开组只能考虑训练集中的序列,从而导致概括不佳。在本文中,我们提出了一个新颖的端到端图生成模型,用于逆转录合成预测,该模型顺序识别反应中心,生成合成子,并将基序添加到合成子中以生成反应物。由于化学有意义的基序比原子大,比离开组还小,因此与添加原子相比,与添加离开组相比,我们的方法的预测复杂性较低。基准数据集上的实验表明,所提出的模型显着胜过先前的最新算法。
translated by 谷歌翻译