在多中心随机临床试验中,由于采集技术或扫描协议,可以多样化成像数据。预测未来患者未来结果的模型受此数据异质性受到损害。在这里,我们提出了一种预测方法,其可以应对大量不同的扫描位点和每位站点的少量样本。根据扫描的视觉外观,我们将网站群集到伪域,并列车伪域特定模型。结果表明,在初步访问中获得的成像数据和肝脏疾病中12周随访的成像数据后,它们在48周后提高了脂肪变性的预测准确性
translated by 谷歌翻译
在过去的几年中,在深度学习中,在深度学习中广泛研究了域的概括问题,但对对比增强成像的关注受到了有限的关注。但是,临床中心之间的对比度成像方案存在明显差异,尤其是在对比度注入和图像采集之间,而与可用的非对抗成像的可用数据集相比,访问多中心对比度增强图像数据受到限制。这需要新的工具来概括单个中心的深度学习模型,跨越新的看不见的域和临床中心,以对比增强成像。在本文中,我们介绍了深度学习技术的详尽评估,以实现对对比度增强图像分割的看不见的临床中心的普遍性。为此,研究,优化和系统评估了几种技术,包括数据增强,域混合,转移学习和域的适应性。为了证明域泛化对对比增强成像的潜力,评估了对对比增强心脏磁共振成像(MRI)中的心室分割的方法。结果是根据位于三个国家(法国,西班牙和中国)的四家医院中获得的多中心心脏对比增强的MRI数据集获得的。他们表明,数据增强和转移学习的组合可以导致单中心模型,这些模型可以很好地推广到训练过程中未包括的新临床中心。在对比增强成像中,具有合适的概括程序的单域神经网络可以达到甚至超过多中心多供应商模型的性能,从而消除了对综合多中心数据集的需求,以训练可概括的模型。
translated by 谷歌翻译
在临床程序期间的医学成像中的机器学习因扫描仪协议,硬件或政策的变化而受到损害,从而产生异构的采集设置。当训练初始静态训练集的深度学习模型时,模型性能和可靠性遭受采集特征的变化,因为数据和目标可能变得不一致。持续学习可以通过在连续数据流上培训来帮助将模型适应变化环境。然而,医学成像的持续手动专家标签需要大量努力。因此,有效地在新的新示例上有效地使用标签资源的方法是使这一策略可行的必要的。这里,我们提出了一种在多扫描仪设置中在医学图像流上运行的持续主动学习的方法。该方法自动识别图像采集特性中的变化 - 新域 - 选择标签和相应地适应培训的最佳示例。标签受限预算有限,类似典型的真实世界情景。为了证明概括性,我们评估了我们三项任务的方法的有效性:心脏分割,肺结核检测和脑年龄估计。结果表明,建议的方法优于其他主动学习方法,同时有效地抵消灾难性的遗忘。
translated by 谷歌翻译
诊断血液系统恶性肿瘤需要鉴定和分类外周血涂片中的白细胞。由不同的实验室程序,染色,照明和显微镜设置引起的域移位阻碍了最近开发的机器学习方法对从不同站点收集的数据的重复性。在这里,我们提出了一个跨域改编的自动编码器,以在三个不同的白色血细胞中从外周血涂片扫描的单个白细胞的三个不同数据集中提取特征。自动编码器基于R-CNN架构,使其专注于相关的白色血细胞并消除图像中的伪影。为了评估提取特征的质量,我们使用简单的随机森林对单个细胞进行分类。我们表明,由于仅在一个数据集中训练的自动编码器提取的丰富功能,随机森林分类器在看不见的数据集上表现出色,并且在交叉域任务中超越了Oracle网络。我们的结果表明,可以在更复杂的诊断和预后任务中采用这种无监督的方法,而无需添加昂贵的专家标签来看不见数据。
translated by 谷歌翻译
新辅助化疗(NAC)对乳腺癌的病理完全反应(PCR)的早期预测在手术计划和优化治疗策略中起着至关重要的作用。最近,建议从多参数MRI(MP-MRI)数据(包括动态对比增强的MRI和扩散加权MRI(DWI))中的多参数MRI(MP-MRI)数据提出基于机器和深度学习的方法。我们引入了PD-DWI,这是一种生理分解的DWI机器学习模型,可预测DWI和临床数据的PCR。我们的模型首先将RAW DWI数据分解为影响DWI信号的各种生理线索,然后使用分解数据,除了临床变量外,还用作基于放射线学的XGBoost模型的输入特征。我们使用公开可用的乳房多参数MRI来预测NAC响应(BMMR2)挑战的公共乳房多参数MRI,证明了PD-DWI模型的添加值与传统的机器学习方法相比,用于从MP-MRI数据进行PCR预测的传统机器学习方法。与当前排行榜上的最佳结果(0.8849 vs. 0.8397)相比,我们的模型大大改善了曲线下的面积(AUC)。 PD-DWI有可能改善NAC乳腺癌后PCR的预测,减少MP-MRI的总体采集时间,并消除对比造影剂注射的需求。
translated by 谷歌翻译
对脑外伤(TBI)患者的准确预后很难为治疗,患者管理和长期护理提供信息至关重要。年龄,运动和学生反应性,缺氧和低血压以及计算机断层扫描(CT)的放射学发现等患者特征已被确定为TBI结果预测的重要变量。 CT是临床实践中选择的急性成像方式,因为其获取速度和广泛的可用性。但是,这种方式主要用于定性和半定量评估,例如马歇尔评分系统,该系统容易受到主观性和人为错误。这项工作探讨了使用最先进的,深度学习的TBI病变分割方法从常规获得的医院入院CT扫描中提取的成像生物标志物的预测能力。我们使用病变体积和相应的病变统计作为扩展TBI结果预测模型的输入。我们将我们提出的功能的预测能力与马歇尔分数进行比较,并与经典的TBI生物标志物配对。我们发现,在预测不利的TBI结果时,自动提取的定量CT功能的性能与Marshall分数相似或更好。利用自动地图集对齐,我们还确定额叶外病变是不良预后的重要指标。我们的工作可能有助于更好地理解TBI,并提供有关如何使用自动化神经影像分析来改善TBI后预测的新见解。
translated by 谷歌翻译
域移位,训练与测试数据特征之间的不匹配,导致多源成像方案中的预测性能显着降低。在医学成像中,不同网站的人口,扫描仪和采集协议的异质性提出了一个重要的领域移位挑战,并限制了机器学习模型的广泛临床采用。统一方法旨在学习数据不变的表示这些差异是解决域移位的普遍工具,但它们通常会导致预测精度的劣化。本文对问题进行了不同的视角:我们拥抱这种不和谐的数据并设计一个简单但有效的解决域名框架。根据我们的理论参数,关键的想法是在源数据上构建备用分类器并将此模型调整为新数据。可以为站点内域适应微调分类器。我们还可以在目标数据上处理我们无法访问地面真理标签的情况;我们展示如何使用辅助任务来适应;这些任务雇用协变量,如年龄,性别和种族,这很容易获得,但仍然与主要任务相关联。我们在大规模现实世界3D脑MRI数据集上展示了站点内部域适应和站点间域推广的大量改进,用于分类阿尔茨海默病和精神分裂症。
translated by 谷歌翻译
多发性硬化症(MS)是中枢神经系统的慢性炎症和退行性疾病,其特征在于,白色和灰质的外观与个体患者的神经症状和标志进行地平整相关。磁共振成像(MRI)提供了详细的体内结构信息,允许定量和分类MS病变,其批判性地通知疾病管理。传统上,MS病变在2D MRI切片上手动注释,一个流程效率低,易于观察室内误差。最近,已经提出了自动统计成像分析技术以基于MRI体素强度检测和分段段病变。然而,它们的有效性受到MRI数据采集技术的异质性和MS病变的外观的限制。通过直接从图像学习复杂的病变表现,深度学习技术已经在MS病变分割任务中取得了显着的突破。在这里,我们提供了全面审查最先进的自动统计和深度学习MS分段方法,并讨论当前和未来的临床应用。此外,我们审查了域适应等技术策略,以增强现实世界临床环境中的MS病变分段。
translated by 谷歌翻译
自动分割前庭造型瘤(VS)和来自磁共振成像(MRI)的耳蜗可以促进与治疗计划。无监督的分割方法已显示出令人鼓舞的结果,而无需耗时且费力的手动标记过程。在本文中,我们提出了一种在无监督域的适应设置中进行VS和耳蜗分割的方法。具体而言,我们首先开发了跨站点的跨模式未配对的图像翻译策略,以丰富合成数据的多样性。然后,我们设计了一种基于规则的离线增强技术,以进一步最大程度地减少域间隙。最后,我们采用一个自我训练的自我配置分割框架,以获得最终结果。在Crossmoda 2022验证排行榜上,我们的方法已获得竞争性与耳蜗细分性能,平均骰子得分为0.8178 $ \ pm $ 0.0803和0.8433 $ \ pm $ 0.0293。
translated by 谷歌翻译
近年来,近年来取得了重大进步,以优化患者对临床试验的招募,然而,需要改进的患者招聘预测方法来支持试验场所选择,并估计试验设计阶段的适当入学时间表。在本文中,使用来自数千名历史临床试验的数据,我们探索机器学习方法,以预测在审判入学期间在临床试验中每月招收每月患者的患者数量。我们表明这些方法可以减少当前行业标准的误差,并提出进一步改进的机会。
translated by 谷歌翻译
Many clinical and research studies of the human brain require an accurate structural MRI segmentation. While traditional atlas-based methods can be applied to volumes from any acquisition site, recent deep learning algorithms ensure very high accuracy only when tested on data from the same sites exploited in training (i.e., internal data). The performance degradation experienced on external data (i.e., unseen volumes from unseen sites) is due to the inter-site variabilities in intensity distributions induced by different MR scanner models, acquisition parameters, and unique artefacts. To mitigate this site-dependency, often referred to as the scanner effect, we propose LOD-Brain, a 3D convolutional neural network with progressive levels-of-detail (LOD) able to segment brain data from any site. Coarser network levels are responsible to learn a robust anatomical prior useful for identifying brain structures and their locations, while finer levels refine the model to handle site-specific intensity distributions and anatomical variations. We ensure robustness across sites by training the model on an unprecedented rich dataset aggregating data from open repositories: almost 27,000 T1w volumes from around 160 acquisition sites, at 1.5 - 3T, from a population spanning from 8 to 90 years old. Extensive tests demonstrate that LOD-Brain produces state-of-the-art results, with no significant difference in performance between internal and external sites, and robust to challenging anatomical variations. Its portability opens the way for large scale application across different healthcare institutions, patient populations, and imaging technology manufacturers. Code, model, and demo are available at the project website.
translated by 谷歌翻译
肾细胞癌(RCC)是一种常见的癌症,随着临床行为的变化。懒惰的RCC通常是低级的,没有坏死,可以在没有治疗的情况下监测。激进的RCC通常是高级的,如果未及时检测和治疗,可能会导致转移和死亡。虽然大多数肾脏癌在CT扫描中都检测到,但分级是基于侵入性活检或手术的组织学。确定对CT图像的侵略性在临床上很重要,因为它促进了风险分层和治疗计划。这项研究旨在使用机器学习方法来识别与病理学特征相关的放射学特征,以促进评估CT图像而不是组织学上的癌症侵略性。本文提出了一种新型的自动化方法,即按区域(Corrfabr)相关的特征聚集,用于通过利用放射学和相应的不对齐病理学图像之间的相关性来对透明细胞RCC进行分类。 CORRFABR由三个主要步骤组成:(1)特征聚集,其中从放射学和病理图像中提取区域级特征,(2)融合,放射学特征与病理特征相关的放射学特征在区域级别上学习,并且(3)在其中预测的地方学到的相关特征用于仅使用CT作为输入来区分侵略性和顽固的透明细胞RCC。因此,在训练过程中,Corrfabr从放射学和病理学图像中学习,但是在没有病理图像的情况下,Corrfabr将使用CORFABR将侵略性与顽固的透明细胞RCC区分开。 Corrfabr仅比放射学特征改善了分类性能,二进制分类F1分数从0.68(0.04)增加到0.73(0.03)。这证明了将病理疾病特征纳入CT图像上透明细胞RCC侵袭性的分类的潜力。
translated by 谷歌翻译
成像生物标志物提供了一种无创的方法来预测治疗前免疫疗法的反应。在这项工作中,我们提出了一种从卷积神经网络(CNN)计算出的新型深度放射素特征(DRF),该特征捕获了与免疫细胞标记和整体生存有关的肿瘤特征。我们的研究使用四个MRI序列(T1加权,T1加权后对比,T2加权和FLAIR),并具有151例脑肿瘤患者的相应免疫细胞标记。该方法通过在MRI扫描的标记肿瘤区域内聚集了预训练的3D-CNN的激活图,从而提取了180个DRF。这些功能提供了编码组织异质性的区域纹理的紧凑而有力的表示。进行了一组全面的实验,以评估所提出的DRF和免疫细胞标记之间的关系,并衡量它们与整体生存的关联。结果表明,DRF和各种标记之间存在很高的相关性,以及根据这些标记分组的患者之间的显着差异。此外,将DRF,临床特征和免疫细胞标记组合为随机森林分类器的输入有助于区分短期和长期生存结果,AUC为72 \%,P = 2.36 $ \ times $ 10 $^{ - 5} $。这些结果证明了拟议的DRF作为非侵入性生物标志物在预测脑肿瘤患者的治疗反应中的有用性。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉,自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。记录了大量的临床记录,但是对于在小型医院收集的数据或处理罕见疾病的数据仍可能稀缺数据和标签。在这种情况下,对较大的未标记临床数据进行预训练可以提高性能。在本文中,我们提出了专为异质的多模式临床数据设计的新型无监督的预训练技术,用于通过蒙版语言建模(MLM)启发的患者预测,通过利用对人群图的深度学习来启发。为此,我们进一步提出了一个基于图形转换器的网络,该网络旨在处理异质临床数据。通过将基于掩盖的预训练与基于变压器的网络相结合,我们将基于掩盖的其他域中训练的成功转化为异质临床数据。我们使用三个医学数据集Tadpole,Mimic-III和一个败血症预测数据集,在自我监督和转移学习设置中展示了我们的预训练方法的好处。我们发现,我们提出的培训方法有助于对患者和人群水平的数据进行建模,并提高所有数据集中不同微调任务的性能。
translated by 谷歌翻译
机器学习算法支撑现代诊断辅助软件,这在临床实践中证明了有价值的,特别是放射学。然而,不准确的是,主要是由于临床样本的可用性有限,用于培训这些算法,妨碍他们在临床医生中更广泛的适用性,接受和识别。我们对最先进的自动质量控制(QC)方法进行了分析,可以在这些算法中实现,以估计其输出的确定性。我们验证了识别磁共振成像数据中的白质超收缩性(WMH)的大脑图像分割任务上最有前途的方法。 WMH是在上层前期成年中常见的小血管疾病的关联,并且由于其变化的尺寸和分布模式而尤其具有挑战性。我们的研究结果表明,不确定度和骰子预测的聚集在此任务的故障检测中最有效。两种方法在0.82至0.84的情况下独立改善平均骰子。我们的工作揭示了QC方法如何有助于检测失败的分割案例,从而使自动分割更可靠,适合临床实践。
translated by 谷歌翻译
纵向电子健康记录(EHR)数据的可用性增加导致改善对疾病的理解和新颖表型的发现。大多数聚类算法仅关注患者轨迹,但具有类似轨迹的患者可能具有不同的结果。寻找不同轨迹和结果的患者亚组可以引导未来的药物开发,改善临床试验的招募。我们使用可以加权的重建,结果和聚类损耗开发经常性神经网络自动拓群体以群集EHR数据,以查找不同类型的患者群集。我们展示我们的模型能够从数据偏差和结果差异中发现已知的集群,表现优于基线模型。我们展示了29,222,229美元糖尿病患者的模型性能,显示出发现患有不同轨迹和不同结果的患者的簇,可用于帮助临床决策。
translated by 谷歌翻译
阿尔茨海默氏病(AD)是最常见的神经退行性疾病,具有最复杂的病原体之一,使有效且临床上可行的决策变得困难。这项研究的目的是开发一个新型的多模式深度学习框架,以帮助医疗专业人员进行AD诊断。我们提出了一个多模式的阿尔茨海默氏病诊断框架(MADDI),以准确检测成像,遗传和临床数据中的AD和轻度认知障碍(MCI)。 Maddi是新颖的,因为我们使用跨模式的注意力,它捕获了模态之间的相互作用 - 这种域中未探讨的方法。我们执行多级分类,这是一项艰巨的任务,考虑到MCI和AD之间的相似之处。我们与以前的最先进模型进行比较,评估注意力的重要性,并检查每种模式对模型性能的贡献。 Maddi在持有的测试集中对MCI,AD和控件进行了96.88%的精度分类。在检查不同注意力方案的贡献时,我们发现跨模式关注与自我注意力的组合表现出了最佳状态,并且模型中没有注意力层表现最差,而F1分数差异为7.9%。我们的实验强调了结构化临床数据的重要性,以帮助机器学习模型将其背景化和解释其余模式化。广泛的消融研究表明,未访问结构化临床信息的任何多模式混合物都遭受了明显的性能损失。这项研究证明了通过跨模式的注意组合多种输入方式的优点,以提供高度准确的AD诊断决策支持。
translated by 谷歌翻译
Robust forecasting of the future anatomical changes inflicted by an ongoing disease is an extremely challenging task that is out of grasp even for experienced healthcare professionals. Such a capability, however, is of great importance since it can improve patient management by providing information on the speed of disease progression already at the admission stage, or it can enrich the clinical trials with fast progressors and avoid the need for control arms by the means of digital twins. In this work, we develop a deep learning method that models the evolution of age-related disease by processing a single medical scan and providing a segmentation of the target anatomy at a requested future point in time. Our method represents a time-invariant physical process and solves a large-scale problem of modeling temporal pixel-level changes utilizing NeuralODEs. In addition, we demonstrate the approaches to incorporate the prior domain-specific constraints into our method and define temporal Dice loss for learning temporal objectives. To evaluate the applicability of our approach across different age-related diseases and imaging modalities, we developed and tested the proposed method on the datasets with 967 retinal OCT volumes of 100 patients with Geographic Atrophy, and 2823 brain MRI volumes of 633 patients with Alzheimer's Disease. For Geographic Atrophy, the proposed method outperformed the related baseline models in the atrophy growth prediction. For Alzheimer's Disease, the proposed method demonstrated remarkable performance in predicting the brain ventricle changes induced by the disease, achieving the state-of-the-art result on TADPOLE challenge.
translated by 谷歌翻译
Structural alterations have been thoroughly investigated in the brain during the early onset of schizophrenia (SCZ) with the development of neuroimaging methods. The objective of the paper is an efficient classification of SCZ in 2 different classes: Cognitive Normal (CN), and SCZ using magnetic resonance imaging (MRI) images. This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for SCZ diagnosis using MRI images. In the proposed model, lightweight 3D CNN is used to extract both spatial and spectral features simultaneously from 3D volume MRI scans, and classification is done using an ensemble bagging classifier. Ensemble bagging classifier contributes to preventing overfitting, reduces variance, and improves the model's accuracy. The proposed algorithm is tested on datasets taken from three benchmark databases available as open-source: MCICShare, COBRE, and fBRINPhase-II. These datasets have undergone preprocessing steps to register all the MRI images to the standard template and reduce the artifacts. The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques. The performance metrics evidenced the use of this model to assist the clinicians for automatic accurate diagnosis of SCZ.
translated by 谷歌翻译
Generalization capability to unseen domains is crucial for machine learning models when deploying to real-world conditions. We investigate the challenging problem of domain generalization, i.e., training a model on multi-domain source data such that it can directly generalize to target domains with unknown statistics. We adopt a model-agnostic learning paradigm with gradient-based meta-train and meta-test procedures to expose the optimization to domain shift. Further, we introduce two complementary losses which explicitly regularize the semantic structure of the feature space. Globally, we align a derived soft confusion matrix to preserve general knowledge about inter-class relationships. Locally, we promote domainindependent class-specific cohesion and separation of sample features with a metric-learning component. The effectiveness of our method is demonstrated with new state-of-the-art results on two common object recognition benchmarks. Our method also shows consistent improvement on a medical image segmentation task.
translated by 谷歌翻译