Gradient boosting is a prediction method that iteratively combines weak learners to produce a complex and accurate model. From an optimization point of view, the learning procedure of gradient boosting mimics a gradient descent on a functional variable. This paper proposes to build upon the proximal point algorithm, when the empirical risk to minimize is not differentiable, in order to introduce a novel boosting approach, called proximal boosting. It comes with a companion algorithm inspired by [1] and called residual proximal boosting, which is aimed at better controlling the approximation error. Theoretical convergence is proved for these two procedures under different hypotheses on the empirical risk and advantages of leveraging proximal methods for boosting are illustrated by numerical experiments on simulated and real-world data. In particular, we exhibit a favorable comparison over gradient boosting regarding convergence rate and prediction accuracy.
translated by 谷歌翻译
我们认为随机梯度下降及其在繁殖内核希尔伯特空间中二进制分类问题的平均变体。在使用损失函数的一致性属性的传统分析中,众所周知,即使在条件标签概率上假设低噪声状态时,预期的分类误差也比预期风险更慢。因此,最终的速率为sublinear。因此,重要的是要考虑是否可以实现预期分类误差的更快收敛。在最近的研究中,随机梯度下降的指数收敛速率在强烈的低噪声条件下显示,但前提是理论分析仅限于平方损耗函数,这对于二元分类任务来说是不足的。在本文中,我们在随机梯度下降的最后阶段中显示了预期分类误差的指数收敛性,用于在相似的假设下进行一类宽类可区分的凸损失函数。至于平均的随机梯度下降,我们表明相同的收敛速率来自训练的早期阶段。在实验中,我们验证了对$ L_2 $调查的逻辑回归的分析。
translated by 谷歌翻译
随机梯度下降血液(SGDM)是许多优化方案中的主要算法,包括凸优化实例和非凸神经网络训练。然而,在随机设置中,动量会干扰梯度噪声,通常导致特定的台阶尺寸和动量选择,以便保证收敛,留出加速。另一方面,近端点方法由于其数值稳定性和针对不完美调谐的弹性而产生了很多关注。他们随机加速的变体虽然已接受有限的注意:动量与(随机)近端点的稳定性相互作用仍然在很大程度上是不孤立的。为了解决这个问题,我们专注于随机近端点算法的动量(SPPAM)的收敛性和稳定性,并显示SPPAM与随机近端点算法(SPPA)相比具有更好的收缩因子的更快的线性收敛速度,如适当的HyperParameter调整。在稳定性方面,我们表明SPPAM取决于问题常数比SGDM更有利,允许更广泛的步长和导致收敛的动量。
translated by 谷歌翻译
光谱滤波理论是一个显着的工具,可以了解用核心学习的统计特性。对于最小二乘来,它允许导出各种正则化方案,其产生的速度超越风险的收敛率比Tikhonov正规化更快。这通常通过利用称为源和容量条件的经典假设来实现,这表征了学习任务的难度。为了了解来自其他损失功能的估计,Marteau-Ferey等。已经将Tikhonov正规化理论扩展到广义自助损失功能(GSC),其包含例如物流损失。在本文中,我们进一步逐步,并表明通过使用迭代的Tikhonov正规方案,可以实现快速和最佳的速率,该计划与优化中的近端点方法有本质相关,并克服了古典Tikhonov规范化的限制。
translated by 谷歌翻译
Iterative regularization is a classic idea in regularization theory, that has recently become popular in machine learning. On the one hand, it allows to design efficient algorithms controlling at the same time numerical and statistical accuracy. On the other hand it allows to shed light on the learning curves observed while training neural networks. In this paper, we focus on iterative regularization in the context of classification. After contrasting this setting with that of regression and inverse problems, we develop an iterative regularization approach based on the use of the hinge loss function. More precisely we consider a diagonal approach for a family of algorithms for which we prove convergence as well as rates of convergence. Our approach compares favorably with other alternatives, as confirmed also in numerical simulations.
translated by 谷歌翻译
In this book chapter, we briefly describe the main components that constitute the gradient descent method and its accelerated and stochastic variants. We aim at explaining these components from a mathematical point of view, including theoretical and practical aspects, but at an elementary level. We will focus on basic variants of the gradient descent method and then extend our view to recent variants, especially variance-reduced stochastic gradient schemes (SGD). Our approach relies on revealing the structures presented inside the problem and the assumptions imposed on the objective function. Our convergence analysis unifies several known results and relies on a general, but elementary recursive expression. We have illustrated this analysis on several common schemes.
translated by 谷歌翻译
我们介绍和分析结构化的随机零订单下降(S-SZD),这是一种有限的差异方法,该方法在一组$ l \ leq d $正交方向上近似于随机梯度,其中$ d $是环境空间的维度。这些方向是随机选择的,并且可能在每个步骤中发生变化。对于平滑的凸功能,我们几乎可以确保迭代的收敛性和对$ o(d/l k^{ - c})$的功能值的收敛速率,每$ c <1/2 $,这是任意关闭的就迭代次数而言,是随机梯度下降(SGD)。我们的界限还显示了使用$ l $多个方向而不是一个方向的好处。对于满足polyak-{\ l} ojasiewicz条件的非convex函数,我们在这种假设下建立了随机Zeroth Order Order Order算法的第一个收敛速率。我们在数值模拟中证实了我们的理论发现,在数值模拟中,满足假设以及对超参数优化的现实世界问题,观察到S-SZD具有很好的实践性能。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
找到模型的最佳超参数可以作为双重优化问题,通常使用零级技术解决。在这项工作中,当内部优化问题是凸但不平滑时,我们研究一阶方法。我们表明,近端梯度下降和近端坐标下降序列序列的前向模式分化,雅各比人会收敛到精确的雅各布式。使用隐式差异化,我们表明可以利用内部问题的非平滑度来加快计算。最后,当内部优化问题大约解决时,我们对高度降低的误差提供了限制。关于回归和分类问题的结果揭示了高参数优化的计算益处,尤其是在需要多个超参数时。
translated by 谷歌翻译
现代统计应用常常涉及最小化可能是非流动和/或非凸起的目标函数。本文侧重于广泛的Bregman-替代算法框架,包括本地线性近似,镜像下降,迭代阈值,DC编程以及许多其他实例。通过广义BREGMAN功能的重新发出使我们能够构建合适的误差测量并在可能高维度下建立非凸起和非凸起和非球形目标的全球收敛速率。对于稀疏的学习问题,在一些规律性条件下,所获得的估算器作为代理人的固定点,尽管不一定是局部最小化者,但享受可明确的统计保障,并且可以证明迭代顺序在所需的情况下接近统计事实准确地快速。本文还研究了如何通过仔细控制步骤和放松参数来设计基于适应性的动力的加速度而不假设凸性或平滑度。
translated by 谷歌翻译
Bilevel优化是在机器学习的许多领域中最小化涉及另一个功能的价值函数的问题。在大规模的经验风险最小化设置中,样品数量很大,开发随机方法至关重要,而随机方法只能一次使用一些样品进行进展。但是,计算值函数的梯度涉及求解线性系统,这使得很难得出无偏的随机估计。为了克服这个问题,我们引入了一个新颖的框架,其中内部问题的解决方案,线性系统的解和主要变量同时发展。这些方向是作为总和写成的,使其直接得出无偏估计。我们方法的简单性使我们能够开发全球差异算法,其中所有变量的动力学都会降低差异。我们证明,萨巴(Saba)是我们框架中著名的传奇算法的改编,具有$ o(\ frac1t)$收敛速度,并且在polyak-lojasciewicz的假设下实现了线性收敛。这是验证这些属性之一的双光线优化的第一种随机算法。数值实验验证了我们方法的实用性。
translated by 谷歌翻译
在本文中,我们提出了一种称为\ Textit {自适应提升直方图变换}(\ TeatiT {ABHT})的渐变升压算法,以便回归以说明直方图变换集合学习中梯度升压算法的本地适应性。从理论上的角度来看,当目标函数位于本地H \“较旧的连续空间时,我们表明我们的ABHT可以用不同的平滑度过滤出区域。因此,我们能够证明收敛的上限ABHT的速率严格小于\ Texit {并行集合直方图变换}(\ Textit {PEHT})的下限。在实验中,合成和现实世界数据实验都经验验证了理论结果,这证明了有利的性能和我们的ABHT的局部适应性。
translated by 谷歌翻译
我们介绍了一种牛顿型方法,可以从任何初始化和带有Lipschitz Hessians的任意凸面目标收敛。通过将立方规范化与某种自适应levenberg - Marquardt罚款合并来实现这一目标。特别地,我们表明由$ x ^ {k + 1} = x ^ k - \ bigl(\ nabla ^ 2 f(x ^ k)+ \ sqrt {h \ | \ nabla f(x ^ k)给出的迭代)\ |} \ mathbf {i} \ bigr)^ { - 1} \ nabla f(x ^ k)$,其中$ h> 0 $是一个常数,用$ \ mathcal {o}全球收敛(\ frac{1} {k ^ 2})$率。我们的方法是牛顿方法的第一个变体,具有廉价迭代和可怕的全球融合。此外,我们证明当目的强烈凸起时,本地我们的方法会收敛超连续。为了提高方法的性能,我们提供了一种不需要超参数的线路搜索程序,并且可提供高效。
translated by 谷歌翻译
Recently, there has been great interest in connections between continuous-time dynamical systems and optimization algorithms, notably in the context of accelerated methods for smooth and unconstrained problems. In this paper we extend this perspective to nonsmooth and constrained problems by obtaining differential inclusions associated to novel accelerated variants of the alternating direction method of multipliers (ADMM). Through a Lyapunov analysis, we derive rates of convergence for these dynamical systems in different settings that illustrate an interesting tradeoff between decaying versus constant damping strategies. We also obtain perturbed equations capturing fine-grained details of these methods, which have improved stability and preserve the leading order convergence rates.
translated by 谷歌翻译
We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization under standard Lipschitz and smoothness assumptions.Applying our results to the convex case, we provide new insights for why multiple epochs of stochastic gradient methods generalize well in practice. In the non-convex case, we give a new interpretation of common practices in neural networks, and formally show that popular techniques for training large deep models are indeed stability-promoting. Our findings conceptually underscore the importance of reducing training time beyond its obvious benefit.
translated by 谷歌翻译
Nesterov的加速梯度(AG)是一种流行的技术,优化包括两个组件的客观函数:凸损耗和惩罚功能。虽然AG方法对于凸面的惩罚表现良好,例如套索,但是当它适用于非核心惩罚时可能会出现收敛问题,例如苏尔州。最近的提议将Nesterov的AG方法推广到非渗透环境,但从未应用于稀疏统计学习问题。在运行所提出的算法之前,有几种超级参数。但是,目前没有明确的规则应该如何选择超参数。在本文中,我们考虑将该非核解AG算法应用于高维线性和逻辑稀疏学习问题,并根据复杂性上限提出超级参数设置以加速收敛。我们进一步建立了收敛速度,并为阻尼序列提出了一种简单且有用的限制。模拟研究表明,可以平均地进行收敛,比传统的ISTA算法的速度快得多。我们的实验还表明,在信号恢复方面,该方法通常优于当前最先进的方法。
translated by 谷歌翻译
提出了一种称为Trust-Region Boosting(TRBOOST)的通用梯度提升机,用于执行监督的机器学习任务。现有的梯度提升机(GBM)已经在许多问题上取得了最先进的结果。但是,在性能和一般性之间保持平衡存在一些困难。一阶算法适用于比二阶算法更多的一般损失函数。虽然表演通常不如后者那么好。TRBOOST基于信任区域算法将GBMS概括为适合任意损失功能,同时保持良好的性能作为二阶算法。进行了几项数值实验,以确认TRBOOST可以获得竞争成果,同时为收敛提供额外的好处。
translated by 谷歌翻译
我们提出了一种基于优化的基于优化的框架,用于计算差异私有M估算器以及构建差分私立置信区的新方法。首先,我们表明稳健的统计数据可以与嘈杂的梯度下降或嘈杂的牛顿方法结合使用,以便分别获得具有全局线性或二次收敛的最佳私人估算。我们在局部强大的凸起和自我协调下建立当地和全球融合保障,表明我们的私人估算变为对非私人M估计的几乎最佳附近的高概率。其次,我们通过构建我们私有M估计的渐近方差的差异私有估算来解决参数化推断的问题。这自然导致近​​似枢轴统计,用于构建置信区并进行假设检测。我们展示了偏置校正的有效性,以提高模拟中的小样本实证性能。我们说明了我们在若干数值例子中的方法的好处。
translated by 谷歌翻译
最近有兴趣的兴趣在教师学生环境中的各种普遍性线性估计问题中的渐近重建性能研究,特别是对于I.I.D标准正常矩阵的案例。在这里,我们超越这些矩阵,并证明了具有具有任意界限频谱的旋转不变数据矩阵的凸遍的线性模型的重建性能的分析公式,严格地确认使用来自统计物理的副本衍生的猜想。该公式包括许多问题,例如压缩感测或稀疏物流分类。通过利用消息通过算法和迭代的统计特性来实现证明,允许表征估计器的渐近实证分布。我们的证据是基于构建Oracle多层向量近似消息传递算法的会聚序列的构建,其中通过检查等效动态系统的稳定性来完成收敛分析。我们说明了我们对主流学习方法的数值示例的要求,例如稀疏的逻辑回归和线性支持矢量分类器,显示中等大小模拟和渐近预测之间的良好一致性。
translated by 谷歌翻译