在许多方面,对机器学习问题的研究很难与所使用的损失函数的研究分开。询问的一种途径是通过适当复合表示形式将这些损失函数视为评分规则,其中预测被映射到概率分布,然后通过评分规则对此进行评分。但是,迄今为止最近的研究主要关注的是分析输出空间上(通常)有限维的条件风险问题,从而使较大的总风险最小化。我们将许多结果概括为无限的维度设置,因此我们能够利用密度和条件密度估计的家族相似之处,以提供规范链路的简单表征。
translated by 谷歌翻译
统计决策问题是统计机器学习的基础。最简单的问题是二进制和多类分类以及类概率估计。其定义的核心是损失函数的选择,这是评估解决方案质量的手段。在本文中,我们从一个新的角度从基本的成分是具有特定结构的凸集,从而系统地开发了此类问题的损失函数理论。损耗函数定义为凸集的支持函数的子级别。因此,它是自动适当的(校准以估计概率)。这种观点提供了三个新颖的机会。它可以发展损失与(反)纳入之间的基本关系,而这似乎以前没有注意到。其次,它可以开发由凸集的计算诱导的损失的演算,从而允许不同损失之间的插值,因此是将损失定制到特定问题的潜在有用的设计工具。在此过程中,我们基于凸组集合的M-sums的现有结果,并大大扩展了现有的结果。第三,透视图导致了一种自然理论的“极性”(或“反向”)损失函数,这些函数源自凸集的极性二元,定义了损失,并形成了VOVK聚合算法的自然通用替代函数。
translated by 谷歌翻译
我们介绍了统计实验的两种新的信息度量,它们概括和包含$ \ phi $ -diverences,积分概率指标,$ \ mathfrak {n} $ - distances(mmd)和$(f,\ gamma)$ divergences $ divergences在两个或多个分布之间。这使我们能够在信息的度量与统计决策问题的贝叶斯风险之间得出简单的几何关系,从而将变异的$ \ phi $ -divergence代表扩展到多个分布,以完全对称的方式。在马尔可夫运营商的行动下,新的分歧家庭被关闭,该家族产生了信息处理平等,这是经典数据处理不平等的完善和概括。这种平等使人深入了解假设类别在经典风险最小化中的重要性。
translated by 谷歌翻译
对抗性鲁棒性是各种现代机器学习应用中的关键财产。虽然它是最近几个理论研究的主题,但与对抗性稳健性有关的许多重要问题仍然是开放的。在这项工作中,我们研究了有关对抗对抗鲁棒性的贝叶斯最优性的根本问题。我们提供了一般的充分条件,可以保证贝叶斯最佳分类器的存在,以满足对抗性鲁棒性。我们的结果可以提供一种有用的工具,用于随后研究对抗性鲁棒性及其一致性的替代损失。这份稿件是“关于普通贝叶斯分类器的存在”在神经潮端中发表的延伸版本。原始纸张的结果不适用于一些非严格凸的规范。在这里,我们将结果扩展到所有可能的规范。
translated by 谷歌翻译
我们正规化并研究通过嵌入式设计凸代理损失功能的自然方法,诸如分类,排名或结构化预测等问题。在这种方法中,一个将每个主要的预测(例如\排名)嵌入$ \ mathbb {r} ^ d $中的一个点,将原始损耗值分配给这些点,并以某种方式“凸出”损失获得代理人。我们在这种方法和多面体(分段 - 线性凸)代理损失之间建立了强大的联系。鉴于任何多面体损失$ L $,我们提供了一个联系功能的建设,其中$ l $是它嵌入的损失的一致代理人。相反,我们展示了如何为任何给定的离散损失构建一致的多面体代理。我们的框架在文献中产生了各种多面体代理人的一致性或不一致的简洁证明,并且对于不一致的代理人,它进一步揭示了这些替代品的离散损失是一致的。我们展示了一些额外的嵌入结构,例如嵌入和匹配贝叶斯风险的等价,以及各种概念的非赎罪概念的等价。使用这些结果,我们建立了间接诱导,在使用多面体替代品时也足够了。
translated by 谷歌翻译
我们在非参数二进制分类的一个对抗性训练问题之间建立了等价性,以及规范器是非识别范围功能的正则化风险最小化问题。由此产生的正常风险最小化问题允许在图像分析和基于图形学习中常常研究的$ L ^ 1 + $(非本地)$ \ Operatorvers {TV} $的精确凸松弛。这种重构揭示了丰富的几何结构,这反过来允许我们建立原始问题的最佳解决方案的一系列性能,包括存在最小和最大解决方案(以合适的意义解释),以及常规解决方案的存在(也以合适的意义解释)。此外,我们突出了对抗性训练和周长最小化问题的联系如何为涉及周边/总变化的正规风险最小化问题提供一种新颖的直接可解释的统计动机。我们的大部分理论结果与用于定义对抗性攻击的距离无关。
translated by 谷歌翻译
我们在非标准空间上介绍了积极的确定核的新类别,这些空间完全是严格的确定性或特征。特别是,我们讨论了可分离的希尔伯特空间上的径向内核,并在Banach空间和强型负类型的度量空间上引入了广泛的内核。一般结果用于在可分离的$ l^p $空间和一组措施上提供明确的核类。
translated by 谷歌翻译
最大平均差异(MMD)(例如内核Stein差异(KSD))已成为广泛应用的中心,包括假设测试,采样器选择,分布近似和变异推断。在每种情况下,这些基于内核的差异度量都需要(i)(i)将目标p与其他概率度量分开,甚至(ii)控制弱收敛到P。在本文中,我们得出了新的足够和必要的条件,以确保(i) (ii)。对于可分开的度量空间上的MMD,我们表征了那些将BOCHNER嵌入量度分开的内核,并引入了简单条件,以将所有措施用无限的内核分开,并控制与有界内核的收敛。我们在$ \ mathbb {r}^d $上使用这些结果来实质性地扩大了KSD分离和收敛控制的已知条件,并开发了已知的第一个KSD,以恰好将弱收敛到P。我们的假设检验,测量和改善样本质量以及用Stein变异梯度下降进行抽样的结果。
translated by 谷歌翻译
我们正式化并研究通过嵌入设计凸替代损失函数的自然方法,例如分类,排名或结构化预测等问题。在这种方法中,一个人将每一个有限的预测(例如排名)嵌入$ r^d $中的一个点,将原始损失值分配给这些要点,并以某种方式“凸出”损失以获得替代物。我们在这种方法和多面体(分段线性凸)的替代损失之间建立了牢固的联系:每个离散损失都被一些多面体损失嵌入,并且每个多面体损失都嵌入了一些离散的损失。此外,嵌入会产生一致的链接功能以及线性替代遗憾界限。正如我们用几个示例所说明的那样,我们的结果具有建设性。特别是,我们的框架为文献中各种多面体替代物以及不一致的替代物提供了简洁的证据或不一致的证据,它进一步揭示了这些代理人一致的离散损失。我们继续展示嵌入的其他结构,例如嵌入和匹配贝叶斯风险的等效性以及各种非算术概念的等效性。使用这些结果,我们确定与多面体替代物一起工作时,间接启发是一致性的必要条件也足够了。
translated by 谷歌翻译
In optimization-based approaches to inverse problems and to statistical estimation, it is common to augment the objective with a regularizer to address challenges associated with ill-posedness. The choice of a suitable regularizer is typically driven by prior domain information and computational considerations. Convex regularizers are attractive as they are endowed with certificates of optimality as well as the toolkit of convex analysis, but exhibit a computational scaling that makes them ill-suited beyond moderate-sized problem instances. On the other hand, nonconvex regularizers can often be deployed at scale, but do not enjoy the certification properties associated with convex regularizers. In this paper, we seek a systematic understanding of the power and the limitations of convex regularization by investigating the following questions: Given a distribution, what are the optimal regularizers, both convex and nonconvex, for data drawn from the distribution? What properties of a data source govern whether it is amenable to convex regularization? We address these questions for the class of continuous and positively homogenous regularizers for which convex and nonconvex regularizers correspond, respectively, to convex bodies and star bodies. By leveraging dual Brunn-Minkowski theory, we show that a radial function derived from a data distribution is the key quantity for identifying optimal regularizers and for assessing the amenability of a data source to convex regularization. Using tools such as $\Gamma$-convergence, we show that our results are robust in the sense that the optimal regularizers for a sample drawn from a distribution converge to their population counterparts as the sample size grows large. Finally, we give generalization guarantees that recover previous results for polyhedral regularizers (i.e., dictionary learning) and lead to new ones for semidefinite regularizers.
translated by 谷歌翻译
大多数现代的潜在变量和概率生成模型,例如变异自动编码器(VAE),即使有无限的数据也无法解决,这些模型也无法解决。此类模型的最新应用表明需要强烈可识别的模型,其中观察结果与唯一的潜在代码相对应。在维持灵活性的同时,取得了进展,最著名的是IVAE(Arxiv:1907.04809 [stat.ml]),该模型排除了许多(但不是全部 - 不确定)。我们构建了一个完整的理论框架,用于分析潜在变量模型的不确定性,并根据生成器函数的属性和潜在变量先验分布精确表征它们。为了说明,我们应用框架以更好地了解最近的可识别性结果的结构。然后,我们研究如何指定强烈识别的潜在变量模型,并构建两个这样的模型。一种是对ivae的直接修饰。另一个想法从最佳运输和导致新颖的模型和连接到最近的工作。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
在本文中,我们介绍了Hessian-Schatten总变异(HTV) - 一种小型演奏,量化了多元官能团的总“益智欲”。我们定义HTV的动机是评估监督学习计划的复杂性。我们首先指定了配备合适类的混合规范的足够矩阵值的Banach空间。然后,我们显示HTV不变于旋转,缩放和翻译。另外,对于线性映射来实现其最小值,支持线性回归是最不复杂的学习模型的常见直觉。接下来,我们呈现封闭式表达式,用于计算两种常规功能的HTV。第一个是SoboLev的类,具有一定程度的规律性,我们表明HTV与Hessian-Schatten Seminorm巧合,有时用作图像重建的常规器。第二个是连续和分段线性(CPWL)功能的类。在这种情况下,我们表明HTV反映了具有共同面的线性区域之间的斜率的总变化。因此,它可以被视为CPWL映射的线性区域(L0型)的数量的凸松弛(L1型​​)。最后,我们说明了我们提出的研讨会与一些具体例子的使用。
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
指数族在机器学习中广泛使用,包括连续和离散域中的许多分布(例如,通过SoftMax变换,Gaussian,Dirichlet,Poisson和分类分布)。这些家庭中的每个家庭的分布都有固定的支持。相比之下,对于有限域而言,最近在SoftMax稀疏替代方案(例如Sparsemax,$ \ alpha $ -entmax和Fusedmax)的稀疏替代方案中导致了带有不同支持的分布。本文基于几种技术贡献,开发了连续分布的稀疏替代方案:首先,我们定义了$ \ omega $ regultion的预测图和任意域的Fenchel-young损失(可能是无限或连续的)。对于线性参数化的家族,我们表明,Fenchel-Young损失的最小化等效于统计的矩匹配,从而概括了指数家族的基本特性。当$ \ omega $是带有参数$ \ alpha $的Tsallis negentropy时,我们将获得````trabormed rompential指数)'',其中包括$ \ alpha $ -entmax和sparsemax和sparsemax($ \ alpha = 2 $)。对于二次能量函数,产生的密度为$ \ beta $ -Gaussians,椭圆形分布的实例,其中包含特殊情况,即高斯,双重量级,三人级和epanechnikov密度,我们为差异而得出了差异的封闭式表达式, Tsallis熵和Fenchel-Young损失。当$ \ Omega $是总变化或Sobolev正常化程序时,我们将获得Fusedmax的连续版本。最后,我们引入了连续的注意机制,从\ {1、4/3、3/3、3/2、2 \} $中得出有效的梯度反向传播算法。使用这些算法,我们证明了我们的稀疏连续分布,用于基于注意力的音频分类和视觉问题回答,表明它们允许参加时间间隔和紧凑区域。
translated by 谷歌翻译
三角形流量,也称为kn \“{o}的Rosenblatt测量耦合,包括用于生成建模和密度估计的归一化流模型的重要构建块,包括诸如实值的非体积保存变换模型的流行自回归流模型(真实的NVP)。我们提出了三角形流量统计模型的统计保证和样本复杂性界限。特别是,我们建立了KN的统计一致性和kullback-leibler估算器的rospblatt的kullback-leibler估计的有限样本会聚率使用实证过程理论的工具测量耦合。我们的结果突出了三角形流动下播放功能类的各向异性几何形状,优化坐标排序,并导致雅各比比流动的统计保证。我们对合成数据进行数值实验,以说明我们理论发现的实际意义。
translated by 谷歌翻译
预期风险最小化(ERM)是机器学习系统的核心。这意味着使用单个数字(其平均值)总结了损失分布中固有的风险。在本文中,我们提出了一种构建风险措施的一般方法,该方法表现出所需的尾巴敏感性,并可能取代ERM中的期望操作员。我们的方法依赖于具有所需尾巴行为的参考分布的规范,该分布与连贯上层概率的一对一对应关系。与此上层概率兼容的任何风险度量都显示出尾部灵敏度,该灵敏度可很好地调整为参考分布。作为一个具体的例子,我们专注于基于F-Divergence歧义集的差异风险度量,这是一种广泛的工具,用于促进机器学习系统的分布鲁棒性。例如,我们展示了基于kullback-leibler差异的歧义集与次指定随机变量的类别相关。我们阐述了差异风险度量和重新排列不变的Banach规范的联系。
translated by 谷歌翻译
我们引入了一个深度学习模型,该模型通常可以近似于常规条件分布(RCD)。所提出的模型分为三个阶段:首先从给定的度量空间$ \ mathcal {x} $到$ \ mathbb {r}^d $通过功能映射进行线性化输入,然后这些线性化的功能由深层馈电的神经网络处理,然后通过Bahdanau等人引入的注意机制的概率扩展,将网络的输出转换为$ 1 $ -WASSERSTEIN SPACE $ \ MATHCAL {P} _1(\ Mathbb {r}^d)$。 (2014)。我们发现,使用我们的框架构建的模型可以从$ \ mathbb {r}^d $到$ \ mathcal {p} _1(\ mathbb {r}^d)$均匀地在紧凑的集合上近似任何连续功能。当近似$ \ mathcal {p} _1(\ mathbb {r}^d)$ - 有价值的函数时,我们确定了两种避免维数的诅咒的方法。第一个策略描述了$ c(\ mathbb {r}^d,\ mathcal {p} _1(\ mathbb {r}^d))$中的函数,可以在$ \ mathbb {r}的任何紧凑子集上有效地近似地近似^D $。第二种方法描述了$ \ mathbb {r}^d $的紧凑子集,其中最多的$ c(\ mathbb {r}^d,\ mathcal {p} _1 _1(\ mathbb {r}^d))$可以有效地近似。结果经过实验验证。
translated by 谷歌翻译
We introduce and study a novel model-selection strategy for Bayesian learning, based on optimal transport, along with its associated predictive posterior law: the Wasserstein population barycenter of the posterior law over models. We first show how this estimator, termed Bayesian Wasserstein barycenter (BWB), arises naturally in a general, parameter-free Bayesian model-selection framework, when the considered Bayesian risk is the Wasserstein distance. Examples are given, illustrating how the BWB extends some classic parametric and non-parametric selection strategies. Furthermore, we also provide explicit conditions granting the existence and statistical consistency of the BWB, and discuss some of its general and specific properties, providing insights into its advantages compared to usual choices, such as the model average estimator. Finally, we illustrate how this estimator can be computed using the stochastic gradient descent (SGD) algorithm in Wasserstein space introduced in a companion paper arXiv:2201.04232v2 [math.OC], and provide a numerical example for experimental validation of the proposed method.
translated by 谷歌翻译
我们基于电子价值开发假设检测理论,这是一种与p值不同的证据,允许毫不费力地结合来自常见场景中的几项研究的结果,其中决定执行新研究可能取决于以前的结果。基于E-V值的测试是安全的,即它们在此类可选的延续下保留I型错误保证。我们将增长速率最优性(GRO)定义为可选的连续上下文中的电力模拟,并且我们展示了如何构建GRO E-VARIABLE,以便为复合空缺和替代,强调模型的常规测试问题,并强调具有滋扰参数的模型。 GRO E值采取具有特殊前瞻的贝叶斯因子的形式。我们使用几种经典示例说明了该理论,包括一个样本安全T检验(其中右哈尔前方的右手前锋为GE)和2x2差价表(其中GRE之前与标准前沿不同)。分享渔业,奈曼和杰弗里斯·贝叶斯解释,电子价值观和相应的测试可以提供所有三所学校的追随者可接受的方法。
translated by 谷歌翻译