In this work, we propose the novel Prototypical Graph Regression Self-explainable Trees (ProGReST) model, which combines prototype learning, soft decision trees, and Graph Neural Networks. In contrast to other works, our model can be used to address various challenging tasks, including compound property prediction. In ProGReST, the rationale is obtained along with prediction due to the model's built-in interpretability. Additionally, we introduce a new graph prototype projection to accelerate model training. Finally, we evaluate PRoGReST on a wide range of chemical datasets for molecular property prediction and perform in-depth analysis with chemical experts to evaluate obtained interpretations. Our method achieves competitive results against state-of-the-art methods.
translated by 谷歌翻译
尽管近期图形神经网络(GNN)进展,但解释了GNN的预测仍然具有挑战性。现有的解释方法主要专注于后性后解释,其中采用另一种解释模型提供培训的GNN的解释。后HOC方法未能揭示GNN的原始推理过程的事实引发了建立GNN与内置解释性的需求。在这项工作中,我们提出了原型图形神经网络(Protgnn),其将原型学习与GNNS相结合,并提供了对GNN的解释的新视角。在Protgnn中,解释自然地从基于案例的推理过程衍生,并且实际在分类期间使用。通过将输入与潜伏空间中的一些学习原型的输入进行比较来获得ProtGnn的预测。此外,为了更好地解释性和更高的效率,结合了一种新颖的条件子图采样模块,以指示输入图的哪个部分与ProtGnn +中的每个原型最相似。最后,我们在各种数据集中评估我们的方法并进行具体的案例研究。广泛的结果表明,Protgnn和Protgnn +可以提供固有的解释性,同时实现与非可解释对方的准确性有关的准确性。
translated by 谷歌翻译
我们介绍Protopool,一个可解释的图像分类模型,其中包含类的原型池。培训比现有方法更直接,因为它不需要修剪阶段。通过向特定类别引入完全可分辨分配的原型来获得它。此外,我们介绍了一种新的焦点相似度,将模型集中在罕见的前景特征上。我们表明Protopool在Cub-200-2011和斯坦福汽车数据集上获得最先进的准确性,大大减少了原型的数量。我们提供了对方法和用户学习的理论分析,以表明我们的原型比具有竞争方法所获得的原型更具独特。
translated by 谷歌翻译
基于深度学习的分子建模的最新进步令人兴奋地加速硅药发现。可获得血清的生成模型,构建原子原子和键合或逐片键的分子。然而,许多药物发现项目需要固定的支架以存在于所生成的分子中,并纳入该约束仅探讨了该约束。在这里,我们提出了一种基于图形的模型,其自然地支持支架作为生成过程的初始种子,这是可能的,因为它不调节在发电历史上。我们的实验表明,Moler与最先进的方法进行了相当的方法,在无约会的分子优化任务上,并且在基于脚手架的任务上优于它们,而不是比现有方法从培训和样本更快的数量级。此外,我们展示了许多看似小设计选择对整体性能的影响。
translated by 谷歌翻译
We seek to automate the design of molecules based on specific chemical properties. In computational terms, this task involves continuous embedding and generation of molecular graphs. Our primary contribution is the direct realization of molecular graphs, a task previously approached by generating linear SMILES strings instead of graphs. Our junction tree variational autoencoder generates molecular graphs in two phases, by first generating a tree-structured scaffold over chemical substructures, and then combining them into a molecule with a graph message passing network. This approach allows us to incrementally expand molecules while maintaining chemical validity at every step. We evaluate our model on multiple tasks ranging from molecular generation to optimization. Across these tasks, our model outperforms previous state-of-the-art baselines by a significant margin.
translated by 谷歌翻译
人工智能(AI)在过去十年中一直在改变药物发现的实践。各种AI技术已在广泛的应用中使用,例如虚拟筛选和药物设计。在本调查中,我们首先概述了药物发现,并讨论了相关的应用,可以减少到两个主要任务,即分子性质预测和分子产生。然后,我们讨论常见的数据资源,分子表示和基准平台。此外,为了总结AI在药物发现中的进展情况,我们介绍了在调查的论文中包括模型架构和学习范式的相关AI技术。我们预计本调查将作为有兴趣在人工智能和药物发现界面工作的研究人员的指南。我们还提供了GitHub存储库(HTTPS:///github.com/dengjianyuan/survey_survey_au_drug_discovery),其中包含文件和代码,如适用,作为定期更新的学习资源。
translated by 谷歌翻译
神经网络(NNS)和决策树(DTS)都是机器学习的流行模型,但具有相互排斥的优势和局限性。为了带来两个世界中的最好,提出了各种方法来明确或隐式地集成NN和DTS。在这项调查中,这些方法是在我们称为神经树(NTS)的学校中组织的。这项调查旨在对NTS进行全面审查,并尝试确定它们如何增强模型的解释性。我们首先提出了NTS的彻底分类学,该分类法表达了NNS和DTS的逐步整合和共同进化。之后,我们根据NTS的解释性和绩效分析,并建议解决其余挑战的可能解决方案。最后,这项调查以讨论有条件计算和向该领域的有希望的方向进行讨论结束。该调查中审查的论文列表及其相应的代码可在以下网址获得:https://github.com/zju-vipa/awesome-neural-trees
translated by 谷歌翻译
随着各个领域的深度学习的巨大成功,图形神经网络(GNNS)也成为图形分类的主要方法。通过全局读出操作,只会聚合所有节点(或节点群集)表示,现有的GNN分类器获得输入图的图级表示,并使用表示来预测其类标签。但是,这种全局聚合不考虑每个节点的结构信息,这导致全局结构的信息丢失。特别地,它通过对所有节点表示来强制执行分类器的相同权重参数来限制辨别力;在实践中,他们中的每一个都有助于不同于其结构语义的目标类别。在这项工作中,我们提出了结构性语义读数(SSREAD)来总结位置级节点表示,这允许为分类模拟特定位置的权重参数,以及有效地捕获与全局结构相关的图形语义。给定输入图,SSREAD旨在通过使用其节点与结构原型之间的语义对齐来识别结构上有意义的位置,该结构原型编码每个位置的原型特征。结构原型经过优化,以最小化所有训练图的对准成本,而其他GNN参数训练以预测类标签。我们的实验结果表明,SSREAD显着提高了GNN分类器的分类性能和可解释性,同时兼容各种聚合函数,GNN架构和学习框架。
translated by 谷歌翻译
由于其弱监督性,多个实例学习(MIL)在许多现实生活中的机器学习应用中都获得了受欢迎程度。但是,解释MIL滞后的相应努力,通常仅限于提出对特定预测至关重要的袋子的实例。在本文中,我们通过引入Protomil,这是一种新型的自我解释的MIL方法,该方法受到基于案例的推理过程的启发,该方法是基于案例的推理过程,该方法在视觉原型上运行。由于将原型特征纳入对象描述中,Protomil空前加入了模型的准确性和细粒度的可解释性,我们在五个公认的MIL数据集上进行了实验。
translated by 谷歌翻译
这项工作考虑了在属性关系图(ARG)上表示表示的任务。 ARG中的节点和边缘都与属性/功能相关联,允许ARG编码在实际应用中广泛观察到的丰富结构信息。现有的图形神经网络提供了有限的能力,可以在局部结构环境中捕获复杂的相互作用,从而阻碍他们利用ARG的表达能力。我们提出了Motif卷积模块(MCM),这是一种新的基于基线的图表表示技术,以更好地利用本地结构信息。处理连续边缘和节点功能的能力是MCM比现有基于基础图案的模型的优势之一。 MCM以无监督的方式构建了一个主题词汇,并部署了一种新型的主题卷积操作,以提取单个节点的局部结构上下文,然后将其用于通过多层perceptron学习高级节点表示,并在图神经网络中传递消息。与其他图形学习方法进行分类的合成图相比,我们的方法在捕获结构环境方面要好得多。我们还通过将其应用于几个分子基准来证明我们方法的性能和解释性优势。
translated by 谷歌翻译
反转合是药物发现的主要任务。通过许多现有方法,它被称为生成图的问题。具体而言,这些方法首先识别反应中心,并相应地打破靶分子以生成合成子。反应物是通过顺序添加到合成图或直接添加正确的离开组来生成反应物。但是,两种策略都遭受了添加原子以来会导致长期的预测顺序,从而增加了产生难度,同时添加离开组只能考虑训练集中的序列,从而导致概括不佳。在本文中,我们提出了一个新颖的端到端图生成模型,用于逆转录合成预测,该模型顺序识别反应中心,生成合成子,并将基序添加到合成子中以生成反应物。由于化学有意义的基序比原子大,比离开组还小,因此与添加原子相比,与添加离开组相比,我们的方法的预测复杂性较低。基准数据集上的实验表明,所提出的模型显着胜过先前的最新算法。
translated by 谷歌翻译
自我监督学习(SSL)是一种通过利用数据中固有的监督来学习数据表示的方法。这种学习方法是药物领域的焦点,由于耗时且昂贵的实验,缺乏带注释的数据。使用巨大未标记数据的SSL显示出在分子属性预测方面表现出色的性能,但存在一些问题。 (1)现有的SSL模型是大规模的;在计算资源不足的情况下实现SSL有限制。 (2)在大多数情况下,它们不利用3D结构信息进行分子表示学习。药物的活性与药物分子的结构密切相关。但是,大多数当前模型不使用3D信息或部分使用它。 (3)以前对分子进行对比学习的模型使用置换原子和键的增强。因此,具有不同特征的分子可以在相同的阳性样品中。我们提出了一个新颖的对比学习框架,用于分子属性预测的小规模3D图对比度学习(3DGCL),以解决上述问题。 3DGCL通过不改变药物语义的预训练过程来反映分子的结构来学习分子表示。仅使用1,128个样本用于预训练数据和100万个模型参数,我们在四个回归基准数据集中实现了最先进或可比性的性能。广泛的实验表明,基于化学知识的3D结构信息对于用于财产预测的分子表示学习至关重要。
translated by 谷歌翻译
阐明并准确预测分子的吸毒性和生物活性在药物设计和发现中起关键作用,并且仍然是一个开放的挑战。最近,图神经网络(GNN)在基于图的分子属性预测方面取得了显着进步。但是,当前基于图的深度学习方法忽略了分子的分层信息以及特征通道之间的关系。在这项研究中,我们提出了一个精心设计的分层信息图神经网络框架(称为hignn),用于通过利用分子图和化学合成的可见的无限元素片段来预测分子特性。此外,首先在Hignn体系结构中设计了一个插件功能的注意块,以适应消息传递阶段后自适应重新校准原子特征。广泛的实验表明,Hignn在许多具有挑战性的药物发现相关基准数据集上实现了最先进的预测性能。此外,我们设计了一种分子碎片的相似性机制,以全面研究Hignn模型在子图水平上的解释性,表明Hignn作为强大的深度学习工具可以帮助化学家和药剂师识别出设计更好分子的关键分子,以设计更好的分子,以设计出所需的更好分子。属性或功能。源代码可在https://github.com/idruglab/hignn上公开获得。
translated by 谷歌翻译
学习表达性分子表示对于促进分子特性的准确预测至关重要。尽管图形神经网络(GNNS)在分子表示学习中取得了显着进步,但它们通常面临诸如邻居探索,不足,过度光滑和过度阵列之类的局限性。同样,由于参数数量大,GNN通常具有较高的计算复杂性。通常,当面对相对大尺寸的图形或使用更深的GNN模型体系结构时,这种限制会出现或增加。克服这些问题的一个想法是将分子图简化为小型,丰富且有益的信息,这更有效,更具挑战性的培训GNN。为此,我们提出了一个新颖的分子图粗化框架,名为FUNQG利用函数组,作为分子的有影响力的构件来确定其性质,基于称为商图的图理论概念。通过实验,我们表明所产生的信息图比分子图小得多,因此是训练GNN的良好候选者。我们将FUNQG应用于流行的分子属性预测基准,然后比较所获得的数据集上的GNN体系结构的性能与原始数据集上的几个最先进的基线。通过实验,除了其参数数量和低计算复杂性的急剧减少之外,该方法除了其急剧减少之外,在各种数据集上的表现显着优于先前的基准。因此,FUNQG可以用作解决分子表示学习问题的简单,成本效益且可靠的方法。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs. GNNs combine node feature information with the graph structure by recursively passing neural messages along edges of the input graph. However, incorporating both graph structure and feature information leads to complex models and explaining predictions made by GNNs remains unsolved. Here we propose GNNEXPLAINER, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task. Given an instance, GNNEXPLAINER identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN's prediction. Further, GNNEXPLAINER can generate consistent and concise explanations for an entire class of instances. We formulate GNNEXPLAINER as an optimization task that maximizes the mutual information between a GNN's prediction and distribution of possible subgraph structures. Experiments on synthetic and real-world graphs show that our approach can identify important graph structures as well as node features, and outperforms alternative baseline approaches by up to 43.0% in explanation accuracy. GNNEXPLAINER provides a variety of benefits, from the ability to visualize semantically relevant structures to interpretability, to giving insights into errors of faulty GNNs.
translated by 谷歌翻译
它是科学技术的基础,能够预测化学反应及其性质。为实现此类技能,重要的是要培养良好的化学反应表示,或者可以自动从数据中学习此类表示的良好深度学习架构。目前没有普遍和广泛采用的方法,可强健地代表化学反应。大多数现有方法患有一个或多个缺点,例如:(1)缺乏普遍性; (2)缺乏稳健性; (3)缺乏可解释性;或(4)需要过度手动预处理。在这里,我们利用基于图的分子结构表示,以开发和测试一个超图注意神经网络方法,以一次解决反应表示和性能 - 预测问题,减轻了上述缺点。我们使用三个独立数据集化学反应评估三个实验中的这种超照片表示。在所有实验中,基于超图的方法与其他表示和它们相应的化学反应模型相匹配或优于相应的模型,同时产生可解释的多级表示。
translated by 谷歌翻译
在药物发现中,分子优化是在所需药物性质方面将药物候选改变为更好的阶梯。随着近期人工智能的进展,传统上的体外过程越来越促进了Silico方法。我们以硅方法提出了一种创新的,以通过深生成模型制定分子并制定问题,以便产生优化的分子图。我们的生成模型遵循基于片段的药物设计的关键思想,并通过修改其小碎片来优化分子。我们的模型了解如何识别待优化的碎片以及如何通过学习具有良好和不良性质的分子的差异来修改此类碎片。在优化新分子时,我们的模型将学习信号应用于在片段的预测位置解码优化的片段。我们还将多个这样的模型构造成管道,使得管道中的每个模型能够优化一个片段,因此整个流水线能够在需要时改变多个分子片段。我们将我们的模型与基准数据集的其他最先进的方法进行比较,并证明我们的方法在中等分子相似度约束下具有超过80%的性质改善,在高分子相似度约束下具有超过80%的财产改善。 。
translated by 谷歌翻译
卷积神经网络(CNN)在一系列医学成像任务中表现出了出色的性能。但是,常规的CNN无法解释其推理过程,因此限制了它们在临床实践中的采用。在这项工作中,我们建议使用基于相似性的比较(Indightr-net)回归的固有解释的CNN,并演示了我们关于糖尿病性视网膜病变的任务的方法。结合到体系结构中的原型层可以可视化图像中与学到的原型最相似的区域。然后将最终预测直观地建模为原型标签的平均值,并由相似性加权。与重新网基的基线相比,我们在无效的网络中实现了竞争性预测性能,这表明没有必要损害性能以实现可解释性。此外,我们使用稀疏性和多样性量化了解释的质量,这两个概念对良好的解释很重要,并证明了几个参数对潜在空间嵌入的影响。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
In this work, we propose MEDICO, a Multi-viEw Deep generative model for molecule generation, structural optimization, and the SARS-CoV-2 Inhibitor disCOvery. To the best of our knowledge, MEDICO is the first-of-this-kind graph generative model that can generate molecular graphs similar to the structure of targeted molecules, with a multi-view representation learning framework to sufficiently and adaptively learn comprehensive structural semantics from targeted molecular topology and geometry. We show that our MEDICO significantly outperforms the state-of-the-art methods in generating valid, unique, and novel molecules under benchmarking comparisons. In particular, we showcase the multi-view deep learning model enables us to generate not only the molecules structurally similar to the targeted molecules but also the molecules with desired chemical properties, demonstrating the strong capability of our model in exploring the chemical space deeply. Moreover, case study results on targeted molecule generation for the SARS-CoV-2 main protease (Mpro) show that by integrating molecule docking into our model as chemical priori, we successfully generate new small molecules with desired drug-like properties for the Mpro, potentially accelerating the de novo design of Covid-19 drugs. Further, we apply MEDICO to the structural optimization of three well-known Mpro inhibitors (N3, 11a, and GC376) and achieve ~88% improvement in their binding affinity to Mpro, demonstrating the application value of our model for the development of therapeutics for SARS-CoV-2 infection.
translated by 谷歌翻译