在本文中,我们描述了一种概率方法,用于使用神经网络估计物体的位置以及其协方差矩阵。我们的方法被设计为强大对异常值,在其他期望的属性中具有相对于网络输出的有界梯度。为了实现这一目标,我们介绍了由Huber损失启发的新概率分布。我们还介绍了一种新的方式来参数化正定矩阵,以确保不对我们回归的坐标系的方向选择。我们评估我们对流行的身体姿势和面部地标数据集的方法,并在PAR或超出非热映射方法的性能上获得性能。我们的代码可在github.com/davmo049/public_prob_regression_with_huber_distributions提供
translated by 谷歌翻译
这项调查旨在提供线性模型及其背后的理论的介绍。我们的目标是对读者进行严格的介绍,并事先接触普通最小二乘。在机器学习中,输出通常是输入的非线性函数。深度学习甚至旨在找到需要大量计算的许多层的非线性依赖性。但是,这些算法中的大多数都基于简单的线性模型。然后,我们从不同视图中描述线性模型,并找到模型背后的属性和理论。线性模型是回归问题中的主要技术,其主要工具是最小平方近似,可最大程度地减少平方误差之和。当我们有兴趣找到回归函数时,这是一个自然的选择,该回归函数可以最大程度地减少相应的预期平方误差。这项调查主要是目的的摘要,即线性模型背后的重要理论的重要性,例如分布理论,最小方差估计器。我们首先从三种不同的角度描述了普通的最小二乘,我们会以随机噪声和高斯噪声干扰模型。通过高斯噪声,该模型产生了可能性,因此我们引入了最大似然估计器。它还通过这种高斯干扰发展了一些分布理论。最小二乘的分布理论将帮助我们回答各种问题并引入相关应用。然后,我们证明最小二乘是均值误差的最佳无偏线性模型,最重要的是,它实际上接近了理论上的极限。我们最终以贝叶斯方法及以后的线性模型结束。
translated by 谷歌翻译
垫子的协方差函数是空间统计和不确定性量化文献中预测的热门选择。垫子纳米级的一个主要好处是,可以精确控制随机过程的平均方形差异性。然而,垫子的纳米阶级具有指数腐烂的尾部,因此可能不适用于建模多项式腐烂的依赖性。使用多项式协方彰可以纠正这个问题;然而,在相应过程的平均方形差异程度上失去控制,在现有多项式考虑因素的随机过程中是无限的平均可分辨率或无论是均值的可分方式。我们构建一个名为\ EMPH {Confluent HyperGeometric}(CH)类的新的协方差函数系列使用垫子\'课程的比例表示,其中一个人获得垫片和多项式协方差的益处。结果协方差包含两个参数:一个控制原点附近的平均方形可分性程度,另一个控制尾部沉重,彼此独立地控制。使用光谱表示,我们导出了这种新协方差的理论属性,包括填充渐近学下的最大似然估计量的等效措施和渐近行为。通过广泛的模拟验证CH类的改进的理论特性。应用使用NASA的轨道碳观察台-2卫星数据证实了CH类在垫子类上的优势,尤其是外推设置。
translated by 谷歌翻译
我们研究了使用尖刺,现场依赖的随机矩阵理论研究迷你批次对深神经网络损失景观的影响。我们表明,批量黑森州的极值值的大小大于经验丰富的黑森州。我们还获得了类似的结果对Hessian的概括高斯牛顿矩阵近似。由于我们的定理,我们推导出作为批量大小的最大学习速率的分析表达式,为随机梯度下降(线性缩放)和自适应算法(例如ADAM(Square Root Scaling)提供了通知实际培训方案,例如光滑,非凸深神经网络。虽然随机梯度下降的线性缩放是在我们概括的更多限制性条件下导出的,但是适应优化者的平方根缩放规则是我们的知识,完全小说。随机二阶方法和自适应方法的百分比,我们得出了最小阻尼系数与学习率与批量尺寸的比率成比例。我们在Cifar-$ 100 $和ImageNet数据集上验证了我们的VGG / WimerEsnet架构上的索赔。根据我们对象检的调查,我们基于飞行学习率和动量学习者开发了一个随机兰齐齐竞争,这避免了对这些关键的超参数进行昂贵的多重评估的需求,并在预残留的情况下显示出良好的初步结果Cifar的architecure - $ 100 $。
translated by 谷歌翻译
我们开发了一个计算程序,以估计具有附加噪声的半摩托车高斯过程回归模型的协方差超参数。也就是说,提出的方法可用于有效估计相关误差的方差,以及基于最大化边际似然函数的噪声方差。我们的方法涉及适当地降低超参数空间的维度,以简化单变量的根发现问题的估计过程。此外,我们得出了边际似然函数及其衍生物的边界和渐近线,这对于缩小高参数搜索的初始范围很有用。使用数值示例,我们证明了与传统参数优化相比,提出方法的计算优势和鲁棒性。
translated by 谷歌翻译
指数族在机器学习中广泛使用,包括连续和离散域中的许多分布(例如,通过SoftMax变换,Gaussian,Dirichlet,Poisson和分类分布)。这些家庭中的每个家庭的分布都有固定的支持。相比之下,对于有限域而言,最近在SoftMax稀疏替代方案(例如Sparsemax,$ \ alpha $ -entmax和Fusedmax)的稀疏替代方案中导致了带有不同支持的分布。本文基于几种技术贡献,开发了连续分布的稀疏替代方案:首先,我们定义了$ \ omega $ regultion的预测图和任意域的Fenchel-young损失(可能是无限或连续的)。对于线性参数化的家族,我们表明,Fenchel-Young损失的最小化等效于统计的矩匹配,从而概括了指数家族的基本特性。当$ \ omega $是带有参数$ \ alpha $的Tsallis negentropy时,我们将获得````trabormed rompential指数)'',其中包括$ \ alpha $ -entmax和sparsemax和sparsemax($ \ alpha = 2 $)。对于二次能量函数,产生的密度为$ \ beta $ -Gaussians,椭圆形分布的实例,其中包含特殊情况,即高斯,双重量级,三人级和epanechnikov密度,我们为差异而得出了差异的封闭式表达式, Tsallis熵和Fenchel-Young损失。当$ \ Omega $是总变化或Sobolev正常化程序时,我们将获得Fusedmax的连续版本。最后,我们引入了连续的注意机制,从\ {1、4/3、3/3、3/2、2 \} $中得出有效的梯度反向传播算法。使用这些算法,我们证明了我们的稀疏连续分布,用于基于注意力的音频分类和视觉问题回答,表明它们允许参加时间间隔和紧凑区域。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
这是机器学习中(主要是)笔和纸练习的集合。练习在以下主题上:线性代数,优化,定向图形模型,无向图形模型,图形模型的表达能力,因子图和消息传递,隐藏马尔可夫模型的推断,基于模型的学习(包括ICA和非正态模型),采样和蒙特卡洛整合以及变异推断。
translated by 谷歌翻译
通过Perspective-N点(PNP)从单个RGB图像找到3D对象是计算机视觉中的长期问题。在端到端的深度学习的驱动下,最近的研究表明将PNP解释为一个可区分的层,因此可以通过反向传播梯度W.R.T.可以部分学习2d-3d点对应。对象姿势。然而,由于确定性姿势本质上是非差异的,因此学习整个不受限制的2D-3D点无法与现有方法融合。在本文中,我们提出了EPRO-PNP,这是用于一般端到端姿势估计的概率PNP层,该阶段估计输出了SE(3)歧管上的姿势分布,从本质上讲,将分类软效量带到连续域。 2d-3d坐标和相应的权重被视为通过最大程度地减少预测姿势分布和目标姿势分布之间的KL差异来学习的中间变量。基本原则统一了现有方法并类似于注意机制。 EPRO-PNP显着胜过竞争基线,缩小基于PNP的方法与LineMod 6DOF姿势估计和NUSCENES 3D对象检测基准的差距。
translated by 谷歌翻译
Existing deep-learning based tomographic image reconstruction methods do not provide accurate estimates of reconstruction uncertainty, hindering their real-world deployment. This paper develops a method, termed as the linearised deep image prior (DIP), to estimate the uncertainty associated with reconstructions produced by the DIP with total variation regularisation (TV). Specifically, we endow the DIP with conjugate Gaussian-linear model type error-bars computed from a local linearisation of the neural network around its optimised parameters. To preserve conjugacy, we approximate the TV regulariser with a Gaussian surrogate. This approach provides pixel-wise uncertainty estimates and a marginal likelihood objective for hyperparameter optimisation. We demonstrate the method on synthetic data and real-measured high-resolution 2D $\mu$CT data, and show that it provides superior calibration of uncertainty estimates relative to previous probabilistic formulations of the DIP. Our code is available at https://github.com/educating-dip/bayes_dip.
translated by 谷歌翻译
基于Heatmap回归的深度学习模型彻底改变了面部地标定位的任务,现有模型在大型姿势,非均匀照明和阴影,闭塞和自闭合,低分辨率和模糊。然而,尽管采用了广泛的采用,Heatmap回归方法遭受与热图编码和解码过程相关的离散化引起的误差。在这项工作中,我们表明这些误差对面部对准精度具有令人惊讶的大量负面影响。为了减轻这个问题,我们通过利用底层连续分布提出了一种热爱编码和解码过程的新方法。为了充分利用新提出的编码解码机制,我们还介绍了基于暹罗的训练,该训练能够在各种几何图像变换上实施热线图一致性。我们的方法在多个数据集中提供了明显的增益,在面部地标本地化中设置新的最先进的结果。旁边的代码将在https://www.adrianbulat.com/face-alignment上提供
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
We propose SWA-Gaussian (SWAG), a simple, scalable, and general purpose approach for uncertainty representation and calibration in deep learning. Stochastic Weight Averaging (SWA), which computes the first moment of stochastic gradient descent (SGD) iterates with a modified learning rate schedule, has recently been shown to improve generalization in deep learning. With SWAG, we fit a Gaussian using the SWA solution as the first moment and a low rank plus diagonal covariance also derived from the SGD iterates, forming an approximate posterior distribution over neural network weights; we then sample from this Gaussian distribution to perform Bayesian model averaging. We empirically find that SWAG approximates the shape of the true posterior, in accordance with results describing the stationary distribution of SGD iterates. Moreover, we demonstrate that SWAG performs well on a wide variety of tasks, including out of sample detection, calibration, and transfer learning, in comparison to many popular alternatives including MC dropout, KFAC Laplace, SGLD, and temperature scaling.
translated by 谷歌翻译
尽管深度神经网络在解决面部对齐方面取得了合理的准确性,但它仍然是一项艰巨的任务,特别是当我们处理面部图像,闭塞或极端头部姿势时。基于热图的回归(HBR)和基于坐标的回归(CBR)是面部比对的两种主要使用方法之一。 CBR方法需要更少的计算机内存,尽管它们的性能小于HBR方法。在本文中,我们提出了一种基于自适应坐标的回归(ACR)损失,以提高CBR对面对对准的准确性。受主动形状模型(ASM)的启发,我们生成平滑面对象,与地面真相标记点相比,一组面部标志点具有更少的变化。然后,我们引入了一种方法来估计通过比较地面真相标记点和相应的平滑面对象的分布来预测网络的每个地标点的难度水平。我们提出的ACR损失可以根据预测面部中每个地标点的难度水平来适应其曲率和损失的影响。因此,ACR损失指导网络朝着具有挑战性的点而不是更容易的点,这提高了面部对齐任务的准确性。我们的广泛评估表明,拟议的ACR损失在预测各种面部图像中的面部标志点方面的能力。
translated by 谷歌翻译
在这项工作中,我们探讨了随机梯度下降(SGD)训练的深神经网络的限制动态。如前所述,长时间的性能融合,网络继续通过参数空间通过一个异常扩散的过程,其中距离在具有非活动指数的梯度更新的数量中增加距离。我们揭示了优化的超公数,梯度噪声结构之间的复杂相互作用,以及在训练结束时解释这种异常扩散的Hessian矩阵。为了构建这种理解,我们首先为SGD推导出一个连续时间模型,具有有限的学习速率和批量尺寸,作为欠下的Langevin方程。我们在线性回归中研究了这个方程,我们可以为参数的相位空间动态和它们的瞬时速度来得出精确的分析表达式,从初始化到实用性。使用Fokker-Planck方程,我们表明驾驶这些动态的关键成分不是原始的训练损失,而是修改的损失的组合,其隐含地规则地规范速度和概率电流,这导致相位空间中的振荡。我们在ImageNet培训的Reset-18模型的动态中确定了这种理论的定性和定量预测。通过统计物理的镜头,我们揭示了SGD培训的深神经网络的异常限制动态的机制来源。
translated by 谷歌翻译
学习线性时间不变动态系统(LTID)的参数是当前兴趣的问题。在许多应用程序中,人们有兴趣联合学习多个相关LTID的参数,这仍然是未探究的日期。为此,我们开发一个联合估计器,用于学习共享常见基矩阵的LTID的过渡矩阵。此外,我们建立有限时间误差界限,取决于底层的样本大小,维度,任务数和转换矩阵的光谱属性。结果是在轻度规律假设下获得的,并在单独学习每个系统的比较中,展示从LTID的汇集信息汇总信息。我们还研究了错过过渡矩阵的联合结构的影响,并显示成立的结果在适度误操作的存在下是强大的。
translated by 谷歌翻译
单图像姿势估计是许多视觉和机器人任务中的一个基本问题,并且现有的深度学习方法不会完全建模和处理来遭受:i)关于预测的不确定性,ii)具有多个(有时是无限)正确姿势的对称对象。为此,我们引入了一种在SO(3)上估算任意非参数分布的方法。我们的关键思想是通过神经网络隐含地表示分布,该神经网络估计给定输入图像和候选姿势的概率。网格采样或梯度上升可用于找到最有可能的姿势,但也可以评估任何姿势的概率,从而实现关于对称性和不确定性的推理。这是代表流形分布的最通用方法,为了展示丰富的表现力,我们介绍了一个具有挑战性的对称和几乎对称对象的数据集。我们不需要对姿势不确定性的监督 - 模型仅以一个示例训练单个姿势。但是,我们的隐式模型具有高度表达能力在3D姿势上处理复杂的分布,同时仍然在标准的非歧义环境上获得准确的姿势估计,从而在Pascal3d+和ModelNet10-SO-SO(3)基准方面实现了最先进的性能。
translated by 谷歌翻译
教师 - 学生模型提供了一个框架,其中可以以封闭形式描述高维监督学习的典型情况。高斯I.I.D的假设然而,可以认为典型教师 - 学生模型的输入数据可以被认为过于限制,以捕获现实数据集的行为。在本文中,我们介绍了教师和学生可以在不同的空格上行动的模型的高斯协变态概括,以固定的,而是通用的特征映射。虽然仍处于封闭形式的仍然可解决,但这种概括能够捕获广泛的现实数据集的学习曲线,从而兑现师生框架的潜力。我们的贡献是两倍:首先,我们证明了渐近培训损失和泛化误差的严格公式。其次,我们呈现了许多情况,其中模型的学习曲线捕获了使用内​​核回归和分类学习的现实数据集之一,其中盒出开箱特征映射,例如随机投影或散射变换,或者与散射变换预先学习的 - 例如通过培训多层神经网络学到的特征。我们讨论了框架的权力和局限性。
translated by 谷歌翻译
用于估计模型不确定性的线性拉普拉斯方法在贝叶斯深度学习社区中引起了人们的重新关注。该方法提供了可靠的误差线,并接受模型证据的封闭式表达式,从而可以选择模型超参数。在这项工作中,我们检查了这种方法背后的假设,尤其是与模型选择结合在一起。我们表明,这些与一些深度学习的标准工具(构成近似方法和归一化层)相互作用,并为如何更好地适应这种经典方法对现代环境提出建议。我们为我们的建议提供理论支持,并在MLP,经典CNN,具有正常化层,生成性自动编码器和变压器的剩余网络上进行经验验证它们。
translated by 谷歌翻译
监督字典学习(SDL)是一种经典的机器学习方法,同时寻求特征提取和分类任务,不一定是先验的目标。 SDL的目的是学习类歧视性词典,这是一组潜在特征向量,可以很好地解释特征以及观察到的数据的标签。在本文中,我们提供了SDL的系统研究,包括SDL的理论,算法和应用。首先,我们提供了一个新颖的框架,该框架将“提升” SDL作为组合因子空间中的凸问题,并提出了一种低级别的投影梯度下降算法,该算法将指数成倍收敛于目标的全局最小化器。我们还制定了SDL的生成模型,并根据高参数制度提供真实参数的全局估计保证。其次,我们被视为一个非convex约束优化问题,我们为SDL提供了有效的块坐标下降算法,该算法可以保证在$ O(\ varepsilon^{ - 1}(\ log)中找到$ \ varepsilon $ - 定位点(\ varepsilon \ varepsilon^{ - 1})^{2})$ iterations。对于相应的生成模型,我们为受约束和正则化的最大似然估计问题建立了一种新型的非反应局部一致性结果,这可能是独立的。第三,我们将SDL应用于监督主题建模和胸部X射线图像中的肺炎检测中,以进行不平衡的文档分类。我们还提供了模拟研究,以证明当最佳的重建性和最佳判别词典之间存在差异时,SDL变得更加有效。
translated by 谷歌翻译