由于其合规性,安全性和高度自由,软机器人对操纵任务的操纵任务很有希望。然而,常用的双向连续段设计意味着软机器人操纵器仅在有限的半球工作空间中起作用。这项工作通过在软臂底部设计,制造和控制一个额外的软棱镜执行器来增加软机器人的工作区。该执行器由气动人造肌肉和活塞组成,使执行器可驱动。我们将任务空间量增加116 \%,现在我们能够执行以前不可能用于软机器人的操纵任务,例如拾取和将对象放在表面上的不同位置并从容器中抓住对象。通过将软机器人的臂与棱镜关节相结合,我们大大提高了软机器人对物体操纵的可用性。这项工作促进了在以人为本环境中进行实际操纵应用的集成和模块化软机器人系统的使用。
translated by 谷歌翻译
动态运动是机器人武器的关键特征,使他们能够快速有效地执行任务。在任务空间运行时,软连续式操纵器目前尚未考虑动态参数。这种缺点使现有的软机器人缓慢并限制了他们处理外力的能力,特别是在物体操纵期间。我们通过使用动态操作空间控制来解决此问题。我们的控制方法考虑了3D连续体臂的动态参数,并引入了新模型,使多段软机械师能够在任务空间中顺利运行。先前仅为刚性机器人提供的先进控制方法现在适用于软机器;例如,潜在的场避免以前仅针对刚性机器人显示,现在延伸到软机器人。使用我们的方法,柔软的机械手现在可以实现以前不可能的各种任务:我们评估机械手在闭环控制实验中的性能,如拾取和障碍物避免,使用附加的软夹具抛出物体,并通过用掌握的粉笔绘制来故意将力施加到表面上。除了新的技能之外,我们的方法还提高了59%的跟踪精度,并将速度提高到19.3的尺寸,与最新的任务空间控制相比。通过这些新发现能力,软机器人可以开始挑战操纵领域的刚性机器人。我们固有的安全和柔顺的软机器人将未来的机器人操纵到一个不用的设置,其中人和机器人并行工作。
translated by 谷歌翻译
软机器均由柔顺性和可变形的材料制成,可以对传统的刚性机器人进行具有挑战性的任务。软机器人的固有依从性使其更适合和适应与人类和环境的相互作用。然而,这种优势以成本为准:他们的连续性性质使得强大地发展基于稳健的基于模型的控制策略。具体地,解决这一挑战的自适应控制方法尚未应用于物理软机械臂。这项工作介绍了使用Euler-Lagrange方法对软连续式机械手进行动态的重新装配。该模型消除了先前作品中的简化假设,并提供了更准确的机器人惯性描述。基于我们的模型,我们介绍了任务空间自适应控制方案。该控制器对模型参数不确定性和未知输入干扰具有稳健。控制器在物理软连续臂上实现。进行了一系列实验以验证控制器在不同有效载荷下的任务空间轨迹跟踪中的有效性。在准确性和稳健性方面,控制器均优于最先进的方法。此外,所提出的基于模型的控制设计是柔性的,并且可以广泛地推广到具有任意数量的连续段的任何连续型机器人臂。
translated by 谷歌翻译
流体驱动的软机器人具有有希望的功能,例如固有的合规性和用户安全。软机器人的控制需要正确处理非线性致动力学,运动限制,工作空间限制和可变形状刚度,因此对于所有这些问题,拥有独特的算法将是非常有益的。在这项工作中,我们将流行的刚性机器人的模型预测控制(MPC)适应为称为Sopra的软机器人臂。我们通过提出一个以模块化方式处理这些框架来解决当前控制方法面临的挑战。尽管以前的工作着重于联合空间公式,但我们通过模拟和实验结果表明,可以成功实施任务空间MPC来进行动态软机器人控制。我们提供了一种方法,可以将零件的恒定曲率和增强的刚体模型假设与内部和外部约束和驱动动力学相结合,并提供了将这些方面团结起来并优化它们的算法。我们认为,基于我们方法的MPC实施可能是解决统一和模块化框架内的大多数基于模型的软机器人控制问题的方法,同时允许包括通常属于其他控制域(例如机器学习技术)的改进。
translated by 谷歌翻译
飞行操纵器是带有附着的刚性机器人的空中无人机,属于机器人的最新和最积极开发的研究领域。这些臂的刚性性质往往缺乏遵守,灵活性和运动平滑。这项工作建议使用柔软的机器人臂连接到全向微空中飞行器(OMAV),以利用臂的柔顺和灵活的行为,同时留下可操纵和动态的,感谢全向无人机作为浮座。随机臂的统一在这种组合平台的建模和控制中造成挑战;这些挑战是通过这项工作解决的。我们基于三个建模原理提出了飞行机械手的统一模型:分段恒定曲率(PCC)和增强刚体模型(ABBM)假设用于建模软连续式机器人和传统刚体机器人借用的浮动基础方法文学。为了演示该参数化的有效性和有用性,实现了一种基于分层模型的反馈控制器。在各种动态任务的模拟中验证并评估控制器,其中检查并验证了该平台的无缺陷运动,干扰恢复和轨迹跟踪能力。软飞行机械手平台可以在空中建筑,货物交付,人力援助,维护和仓库自动化中打开新的应用领域。
translated by 谷歌翻译
为了使软机器人在以人为本的环境中有效工作,他们需要能够根据(本体感受)传感器估算其状态和外部相互作用。估计干扰使软机器人可以执行理想的力控制。即使在刚性操纵器的情况下,最终效应器的力估计也被视为一个非平凡的问题。实际上,其他当前应对这一挑战的方法也存在防止其一般应用的缺点。它们通常基于简化的软动力学模型,例如依赖于零件的恒定曲率(PCC)近似值或匹配的刚体模型的模型,这些模型并不代表该问题的细节。因此,无法构建复杂的人类机器人互动所需的应用。有限元方法(FEM)允许以更通用的方式预测软机器人动力学。在这里,使用框架沙发的软机器人建模功能,我们构建了一个详细的FEM模型,该模型由多段的软连续机器人手臂组成,该机器人由合规的可变形材料和纤维增强的压力驱动室组成,并具有用于提供方向输出的传感器的模型。该模型用于为操纵器建立状态观察者。校准模型参数以使用物理实验匹配手动制造过程的缺陷。然后,我们解决了二次编程逆动力学问题,以计算解释姿势误差的外力的组成部分。我们的实验显示,平均力估计误差约为1.2%。由于提出的方法是通用的,因此这些结果令人鼓舞,该任务是构建可以在以人为中心的环境中部署的复杂,反应性,基于传感器的行为的软机器人。
translated by 谷歌翻译
“无限”软机械臂自由度的自由度使他们的控制尤其具有挑战性。在本文中,我们利用了先前开发的模型,将软臂的等效绘制到一系列通用接头,设计两个闭环控制器:用于轨迹跟踪的配置空间控制器和用于位置控制的任务空间控制器末端效应。在四段软手臂上的广泛实验和模拟证明了以下方面的大量改进:a)配置空间控制器的卓越的跟踪精度和B)减少了任务空间控制器的稳定时间和稳态误差。还验证了任务空间控制器在软臂和环境之间存在相互作用的情况下有效。
translated by 谷歌翻译
虽然在各种应用中广泛使用刚性机器人,但它们在他们可以执行的任务中受到限制,并且在密切的人机交互中可以保持不安全。另一方面,软机器鞋面超越了刚性机器人的能力,例如与工作环境,自由度,自由度,制造成本和与环境安全互动的兼容性。本文研究了纤维增强弹性机壳(释放)作为一种特定类型的软气动致动器的行为,可用于软装饰器。创建动态集参数模型以在各种操作条件下模拟单一免费的运动,并通知控制器的设计。所提出的PID控制器使用旋转角度来控制多项式函数之后的自由到限定的步进输入或轨迹的响应来控制末端执行器的方向。另外,采用有限元分析方法,包括释放的固有非线性材料特性,精确地评估释放的各种参数和配置。该工具还用于确定模块中多个释放的工作空间,这基本上是软机械臂的构建块。
translated by 谷歌翻译
Everting, soft growing vine robots benefit from reduced friction with their environment, which allows them to navigate challenging terrain. Vine robots can use air pouches attached to their sides for lateral steering. However, when all pouches are serially connected, the whole robot can only perform one constant curvature in free space. It must contact the environment to navigate through obstacles along paths with multiple turns. This work presents a multi-segment vine robot that can navigate complex paths without interacting with its environment. This is achieved by a new steering method that selectively actuates each single pouch at the tip, providing high degrees of freedom with few control inputs. A small magnetic valve connects each pouch to a pressure supply line. A motorized tip mount uses an interlocking mechanism and motorized rollers on the outer material of the vine robot. As each valve passes through the tip mount, a permanent magnet inside the tip mount opens the valve so the corresponding pouch is connected to the pressure supply line at the same moment. Novel cylindrical pneumatic artificial muscles (cPAMs) are integrated into the vine robot and inflate to a cylindrical shape for improved bending characteristics compared to other state-of-the art vine robots. The motorized tip mount controls a continuous eversion speed and enables controlled retraction. A final prototype was able to repeatably grow into different shapes and hold these shapes. We predict the path using a model that assumes a piecewise constant curvature along the outside of the multi-segment vine robot. The proposed multi-segment steering method can be extended to other soft continuum robot designs.
translated by 谷歌翻译
Soft robots are interesting examples of hyper-redundancy in robotics, however, the nonlinear continuous dynamics of these robots and the use of hyper-elastic and visco-elastic materials makes modeling of these robots more complicated. This study presents a geometric Inverse Kinematic (IK) model for trajectory tracking of multi-segment extensible soft robots, where, each segment of the soft actuator is geometrically approximated with multiple rigid links connected with rotary and prismatic joints. Using optimization methods, the desired configuration variables of the soft actuator for the desired end-effector positions are obtained. Also, the redundancy of the robot is applied for second task applications, such as tip angle control. The model's performance is investigated through simulations, numerical benchmarks, and experimental validations and results show lower computational costs and higher accuracy compared to most existing methods. The method is easy to apply to multi segment soft robots, both in 2D and 3D. As a case study, a fully 3D-printed soft robot manipulator is tested using a control unit and the model predictions show good agreement with the experimental results.
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
近二十年来,软机器人技术一直是机器人社区中的一个热门话题。但是,对于软机器人进行建模和分析的可用工具仍然有限。本文介绍了一个用户友好的MATLAB工具箱Soft Robot Simulator(Sorosim),该工具集合了Cosserat杆的几何变量应变(GVS)模型,以促进对软,刚性或混合机器人系统的静态和动力分析。我们简要概述了工具箱的设计和结构,并通过将其结果与文献中发布的结果进行比较。为了突出该工具箱有效建模,模拟,优化和控制各种机器人系统的潜力,我们演示了四个示例应用程序。所示的应用探索了单,分支,开放式和闭合链机器人系统的不同执行器和外部加载条件。我们认为,软机器人研究社区将从Sorosim工具箱中大大受益,用于多种应用。
translated by 谷歌翻译
手剪切辅助(HSA)是制造电动机驱动,柔软的连续内机器人的有希望的技术。从检查任务到太阳能跟踪的许多潜在应用都需要准确的运动模型来预测这些结构的位置和方向。目前没有基于HSA的连续体平台的型号。为了解决这个差距,我们建议使用长度变化耦合矩阵来调整分段恒定曲率(PCC)模型。这模拟了HSA结构在2x2阵列中的交互。耦合矩阵将电机角度的变化映射到长度的变化,并在修改的PCC模型中定义了配置空间。我们在包含弯曲,延伸和压缩行为的复合运动上评估我们的模型。我们的模型实现了位置精度,平均误差为5.5mm或4.5%的体长和标准偏差为1.72mm。此外,我们通过-2.8 $ ^ \ circ $和1.9 $ ^ \ circ $的平均误差达到角度精度。
translated by 谷歌翻译
本文提出了一种以非零速度的效果友好型捕捉对象的混合优化和学习方法。通过受约束的二次编程问题,该方法生成最佳轨迹,直至机器人和对象之间的接触点,以最小化其相对速度并减少初始影响力。接下来,生成的轨迹是由基于人类的捕捉演示的旋风动作原始词更新的,以确保围绕接口点的平稳过渡。此外,学习的人类可变刚度(HVS)被发送到机器人的笛卡尔阻抗控制器,以吸收后影响力并稳定捕获位置。进行了三个实验,以将我们的方法与固定位置阻抗控制器(FP-IC)进行比较。结果表明,所提出的方法的表现优于FP-IC,同时添加HVS可以更好地吸收影响后力。
translated by 谷歌翻译
用于移动操作的机器人平台需要满足许多对许多现实世界应用的两个矛盾要求:需要紧凑的基础才能通过混乱的室内环境导航,而支撑需要足够大以防止翻滚或小费,尤其是在快速操纵期间有效载荷或与环境有力互动的操作。本文提出了一种新颖的机器人设计,该设计通过多功能足迹来满足这两种要求。当操纵重物时,它可以将其足迹重新配置为狭窄的配置。此外,其三角形配置可通过防止支撑开关来在不平坦的地面上进行高精度任务。提出了一种模型预测控制策略,该策略统一计划和控制,以同时导航,重新配置和操纵。它将任务空间目标转换为新机器人的全身运动计划。提出的设计已通过硬件原型进行了广泛的测试。足迹重新配置几乎可以完全消除操纵引起的振动。控制策略在实验室实验和现实世界的施工任务中被证明有效。
translated by 谷歌翻译
在本文中,创建了具有定制设计的执行器空间弦编码器的增强软机器人原型,以研究动态软机器人轨迹跟踪。软机器人原型嵌入了所提出的自适应被动性控制和有效的动态模型,使具有挑战性的轨迹跟踪任务成为可能。我们通过在不同的操作场景上执行实验验证:各种跟踪速度和外部干扰来探索跟踪准确性以及提出的控制策略的全部潜力。在所有实验场景中,提出的自适应被动控制都优于常规PD反馈线性化控制。实验分析详细介绍了所提出的方法的优势和缺点,并指出了未来软机器人动态控制的下一步。
translated by 谷歌翻译
在过去的十年中,自动驾驶航空运输车辆引起了重大兴趣。这是通过空中操纵器和新颖的握手的技术进步来实现这一目标的。此外,改进的控制方案和车辆动力学能够更好地对有效载荷进行建模和改进的感知算法,以检测无人机(UAV)环境中的关键特征。在这项调查中,对自动空中递送车辆的技术进步和开放研究问题进行了系统的审查。首先,详细讨论了各种类型的操纵器和握手,以及动态建模和控制方法。然后,讨论了降落在静态和动态平台上的。随后,诸如天气状况,州估计和避免碰撞之类的风险以确保安全过境。最后,调查了交付的UAV路由,该路由将主题分为两个领域:无人机操作和无人机合作操作。
translated by 谷歌翻译
大物体的操纵和安全地在人类附近进行安全操作的能力是通用国内机器人助手的关键能力。我们介绍了一种柔软,触觉的人形的人形机器人的设计,并展示了用于处理大物体的全身丰富的接触操作策略。我们展示了我们的硬件设计理念,用于使用软触觉传感模块,包括:(i)低成本,抗缝,接触压力定位的武器, (ii)基于TRI软气泡传感器的爪子,用于最终效应器,(III)柔顺的力/几何传感器,用于粗糙几何感测表面/胸部。我们利用这些模块的机械智能和触觉感应,为全身抓握控制进行开发和展示运动原语。我们评估硬件在实现各种大型国内物体上实现不同优势的掌握。我们的结果表明,利用富含接触的操纵策略的柔软度和触觉感应的重要性,以及与世界的全身力量控制的互动前进的道路。
translated by 谷歌翻译
软机器人抓手具有许多优势,可以解决动态空中抓握方面的挑战。最近展示的用于空中抓握的典型多指的软握把高度依赖于成功抓握的目标对象的方向。这项研究通过开发一种用于自主空气操纵的全向系统来推动动态空中抓地力的边界。特别是,该论文研究了一种新型,高度集成,模块化,传感器富含通用的握把的设计,制造和实验验证,专为空中应用而设计。提出的抓手利用粒子堵塞和软颗粒材料的最新发展产生了强大的握持力,同时非常轻巧,节能,并且只需要低激活力。我们表明,通过在膜的硅硅混合物中添加添加剂,可以将持有力提高多达50%。实验表明,即使没有几何互锁,我们的轻质抓地力也可以以低至2.5n的激活力发育高达15n的持有力。最后,通过将抓地力安装到多旋风的情况下,在实际条件下执行了一个选择和释放任务。开发的空中抓握系统具有许多有用的属性,例如对碰撞的弹性和鲁棒性以及将无人机与环境脱离的固有的被动合规性。
translated by 谷歌翻译
自然界中发现的大多数软体体生物都存在于水下环境中。研究水下软机器人的运动和控制也很有帮助。但是,由于难以设计,制造和防水,因此无法使用容易获得的水下软机器人系统。此外,由于需要密封的电子包,因此潜水机器人通常没有可配置的组件。这项工作介绍了由液压执行器驱动的潜水软机器人手臂的开发,该臂主要由3D可打印的零件组成,可以在短时间内组装。此外,它的模块化设计可实现多种形状配置和轻松交换软执行器。作为探索该系统上机器学习控制算法的第一步,开发,训练和评估了两个深神网络模型,以估算机器人的前进和逆运动学。用于控制这种水下软机器人臂的技术可以帮助促进对如何控制软机器人系统的理解。
translated by 谷歌翻译