We describe a model of visual processing in which feedback connections from a higher-to a lowerorder visual cortical area carry predictions of lower-level neural activities, whereas the feedforward connections carry the residual errors between the predictions and the actual lower-level activities. When exposed to natural images, a hierarchical network of model neurons implementing such a model developed simple-cell-like receptive fields. A subset of neurons responsible for carrying the residual errors showed endstopping and other extra-classical receptive-field effects. These results suggest that rather than being exclusively feedforward phenomena, nonclassical surround effects in the visual cortex may also result from cortico-cortical feedback as a consequence of the visual system using an efficient hierarchical strategy for encoding natural images.
translated by 谷歌翻译
预测性编码提供了对皮质功能的潜在统一说明 - 假设大脑的核心功能是最小化有关世界生成模型的预测错误。该理论与贝叶斯大脑框架密切相关,在过去的二十年中,在理论和认知神经科学领域都产生了重大影响。基于经验测试的预测编码的改进和扩展的理论和数学模型,以及评估其在大脑中实施的潜在生物学合理性以及该理论所做的具体神经生理学和心理学预测。尽管存在这种持久的知名度,但仍未对预测编码理论,尤其是该领域的最新发展进行全面回顾。在这里,我们提供了核心数学结构和预测编码的逻辑的全面综述,从而补充了文献中最新的教程。我们还回顾了该框架中的各种经典和最新工作,从可以实施预测性编码的神经生物学现实的微电路到预测性编码和广泛使用的错误算法的重新传播之间的紧密关系,以及对近距离的调查。预测性编码和现代机器学习技术之间的关系。
translated by 谷歌翻译
稀疏编码已在视觉皮层的模型中纳入其计算优势和与生物学的连接。但是,稀疏程度如何在视觉任务上有助于表现,并不充分了解。在这项工作中,稀疏的编码已集成到现有的分层V2型号(Hosoya和Hyv \“Arinen,2015),但更换其独立的分量分析(ICA),具有明确的稀疏编码,其中可以控制稀疏程度。在训练之后,稀疏编码基础函数具有更高程度的稀疏性类似于定性不同的结构,例如曲线和角落。使用图像分类任务进行评估模型的贡献,特别是与中级视觉相关的任务,包括图 - 地面分类,纹理分类和两条线刺激之间的角度预测。此外,与v2(Freman等,2013)中报道的纹理敏感度量相比,评估模型(Freeman等,2013)和删除区域推理任务。该实验结果表明,同时在分类图像中比ICA差的稀疏编码差,只能稀疏编码能够更好地匹配纹理森通过提高稀疏编码的稀疏度,v2和推断删除图像区域的定位等级。在较大删除的图像区域上允许推断推断出更高程度的稀疏性。这里描述允许在稀疏编码中进行这种推理能力的机制。
translated by 谷歌翻译
将早期视觉信号转换为v4中的曲率表示的机制是未知的。我们提出了一种分层模型,揭示了V1 / V2编码,该编码是对v4中报告的曲率表示的这种转换的基本组件。然后,通过放松单个高斯之前的经常施加的,在从猕猴V4响应的层次结构的最后一层中学习V4形选择性。我们发现V4电池与具有相似兴奋性和抑制贡献的接收领域的完整空间范围集成多个形状部分。我们的成果在V4神经元中发现了关于形状选择性的现有数据的新细节,通过进一步的实验可以提高我们对该领域的处理的理解。因此,我们提出了一种刺激装置的设计,该刺激装置允许在不干扰曲率信号的情况下消除形状部分以隔离部分贡献至V4响应。
translated by 谷歌翻译
In the brain, information is encoded, transmitted and used to inform behaviour at the level of timing of action potentials distributed over population of neurons. To implement neural-like systems in silico, to emulate neural function, and to interface successfully with the brain, neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain. To facilitate the cross-talk between neuromorphic engineering and neuroscience, in this Review we first critically examine and summarize emerging recent findings about how population of neurons encode and transmit information. We examine the effects on encoding and readout of information for different features of neural population activity, namely the sparseness of neural representations, the heterogeneity of neural properties, the correlations among neurons, and the time scales (from short to long) at which neurons encode information and maintain it consistently over time. Finally, we critically elaborate on how these facts constrain the design of information coding in neuromorphic circuits. We focus primarily on the implications for designing neuromorphic circuits that communicate with the brain, as in this case it is essential that artificial and biological neurons use compatible neural codes. However, we also discuss implications for the design of neuromorphic systems for implementation or emulation of neural computation.
translated by 谷歌翻译
Despite the wealth of empirical data in neuroscience, there are relatively few global theories about how the brain works. A recently proposed free-energy principle for adaptive systems tries to provide a unified account of action, perception and learning. Although this principle has been portrayed as a unified brain theory 1 , its capacity to unify different perspectives on brain function has yet to be established. This Review attempts to place some key theories within the free-energy framework, in the hope of identifying common themes. I first review the free-energy principle and then deconstruct several global brain theories to show how they all speak to the same underlying idea. The free-energy principleThe free-energy principle (BOX 1) says that any selforganizing system that is at equilibrium with its environment must minimize its free energy 2 . The principle is essentially a mathematical formulation of how adaptive systems (that is, biological agents, like animals or brains) resist a natural tendency to disorder [3][4][5][6] . What follows is a non-mathematical treatment of the motivation and implications of the principle. We will see that although the motivation is quite straightforward, the implications are complicated and diverse. This diversity allows the principle to account for many aspects of brain structure and function and lends it the potential to unify different perspectives on how the brain works. In subsequent sections, I discuss how the principle can be applied to neuronal systems as viewed from these perspectives. This Review starts in a rather abstract and technical way but then tries to unpack the basic idea in more familiar terms.Motivation: resisting a tendency to disorder. The defining characteristic of biological systems is that they maintain their states and form in the face of a constantly changing environment [3][4][5][6] . From the point of view of the brain, the environment includes both the external and the internal milieu. This maintenance of order is seen at many levels and distinguishes biological from other self-organizing systems; indeed, the physiology of biological systems can be reduced almost entirely to their homeostasis 7 . More precisely, the repertoire of physiological and sensory states in which an organism can be is limited, and these states define the organism's phenotype. Mathematically, this means that the probability of these (interoceptive and exteroceptive) sensory states must have low entropy; in other words, there is a high probability that a system will be in any of a small number of states, and a low probability that it will be in the remaining states. Entropy is also the average self information or 'surprise' 8 (more formally, it is the negative log-probability of an outcome). Here, 'a fish out of water' would be in a surprising state (both emotionally and mathematically). A fish that frequently forsook water would have high entropy. Note that both surprise and entropy depend on the agen
translated by 谷歌翻译
A visual attention system, inspired by the behavior and the neuronal architecture of the early primate visual system, is presented. Multiscale image features are combined into a single topographical saliency map. A dynamical neural network then selects attended locations in order of decreasing saliency. The system breaks down the complex problem of scene understanding by rapidly selecting, in a computationally efficient manner, conspicuous locations to be analyzed in detail.
translated by 谷歌翻译
大脑减轻了对自我产生的遗产的反应(例如,我们不能自我痒痒)。这种现象是这种现象,称为感官衰减,天生,还是通过学习获得的?为了探讨后一种可能性,我们创建了由感官(Proprioceptive和Extleceptive),协会和行政区域组成的神经网络模型。由网络控制的模拟机器人学会了以获得具有自我产生或外部产生的脱敏反馈的电动机图案。我们发现,机器人首先在学习早期阶段的自我产生和外部产生的条件下的感觉和关联区域中的响应增加,但随后,它逐渐衰减在仅用于自我产生的条件的感觉区域中的反应。机器人自发地获得了通过切换执行区域的神经状态的条件来切​​换(衰减或放大)响应的容量。这表明通过学习自动组织网络内部感官信息流的主动控制。我们还发现,调制感官信息流程的天然改变诱导类似于精神分裂症和自闭症谱系疾病的一些特征。本研究提供了一种关于神经机制潜在的感知现象和精神病疾病的新颖性观点。
translated by 谷歌翻译
深度神经网络在图像分类中Excel Excel,但它们对输入扰动的性能比人类感知更强。在这项工作中,我们可以通过在深卷积网络中纳入脑激发的经常性动态来探讨此缺点是否可以部分地解决。我们从神经科学的一个受欢迎的框架中获取灵感:“预测编码”。在分层模型的每层,生成反馈'预测'(即,重建)前一层中的活动模式。重建错误用于迭代地更新时间间隔内的网络的表示,并通过自然图像数据集来优化网络的反馈权重 - 一种无监督的培训形式。我们展示将此策略实施到两个流行的网络中,VGG16和高效网络,从而提高了对各种损坏和对抗的攻击的鲁棒性。我们假设其他前馈网络可以类似地受益于所提出的框架。为了在这种方向上促进研究,我们提供称为PRIGEIFY的基于开放的Pytorch的包,其可用于实施和研究预测编码动态在任何卷积神经网络中的影响。
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
利用数据不变对于人工和生物神经回路的有效学习至关重要。因此,了解神经网络如何发现能够利用其投入的基础对称性的适当表示,因此对于机器学习和神经科学至关重要。例如,卷积神经网络旨在利用翻译对称性及其功能触发了第一波深度学习成功。但是,迄今为止,从具有完全连接的网络的翻译不变数据中学习卷积已经被证明难以捉摸。在这里,我们展示了最初完全连接的神经网络解决歧视任务的神经网络如何直接从其输入中学习卷积结构,从而导致局部,空间铺设的接受场。这些接收场与经过同一任务训练的卷积网络的过滤器相匹配。通过精心设计视觉场景的数据模型,我们表明这种模式的出现是由输入的非高斯,高阶的局部结构触发的,该结构长期以来一直被认为是自然图像的标志。我们在简单的模型中提供了负责这种现象的模式形成机制的分析和数值表征,并在接受场形成与高阶输入相关性的张量分解之间找到了意外的联系。这些结果为各种感觉方式的低级特征探测器的发展提供了新的观点,并为研究高阶统计数据对神经网络学习的影响铺平了道路。
translated by 谷歌翻译
在感知变化下的自然对象的不变性在突触连接图中的对称性可能在大脑中编码。该图可以通过在不同感知方式的生物学上卓越的过程中通过无监督学习建立。该假设编码方案由自然主义音频和图像数据的相关结构支持,并且它预测了神经连接架构,这与关于主要感觉皮质的许多经验观察一致。
translated by 谷歌翻译
Models of sensory processing and learning in the cortex need to efficiently assign credit to synapses in all areas. In deep learning, a known solution is error backpropagation, which however requires biologically implausible weight transport from feed-forward to feedback paths. We introduce Phaseless Alignment Learning (PAL), a bio-plausible method to learn efficient feedback weights in layered cortical hierarchies. This is achieved by exploiting the noise naturally found in biophysical systems as an additional carrier of information. In our dynamical system, all weights are learned simultaneously with always-on plasticity and using only information locally available to the synapses. Our method is completely phase-free (no forward and backward passes or phased learning) and allows for efficient error propagation across multi-layer cortical hierarchies, while maintaining biologically plausible signal transport and learning. Our method is applicable to a wide class of models and improves on previously known biologically plausible ways of credit assignment: compared to random synaptic feedback, it can solve complex tasks with less neurons and learn more useful latent representations. We demonstrate this on various classification tasks using a cortical microcircuit model with prospective coding.
translated by 谷歌翻译
过去十年来,人们对人工智能(AI)的兴趣激增几乎完全由人工神经网络(ANN)的进步驱动。尽管ANN为许多以前棘手的问题设定了最先进的绩效,但它们需要大量的数据和计算资源进行培训,并且由于他们采用了监督的学习,他们通常需要知道每个培训示例的正确标记的响应,并限制它们对现实世界域的可扩展性。尖峰神经网络(SNN)是使用更多类似脑部神经元的ANN的替代方法,可以使用无监督的学习来发现输入数据中的可识别功能,而又不知道正确的响应。但是,SNN在动态稳定性方面挣扎,无法匹配ANN的准确性。在这里,我们展示了SNN如何克服文献中发现的许多缺点,包括为消失的尖峰问题提供原则性解决方案,以优于所有现有的浅SNN,并等于ANN的性能。它在使用无标记的数据和仅1/50的训练时期使用无监督的学习时完成了这一点(标记数据仅用于最终的简单线性读数层)。该结果使SNN成为可行的新方法,用于使用未标记的数据集快速,准确,有效,可解释的机器学习。
translated by 谷歌翻译
贝叶斯脑假设假设大脑根据贝叶斯定理进行准确地运行统计分布。突触前囊泡释放神经递质的随机性失效可以让大脑从网络参数的后部分布中样本,被解释为认知不确定性。尚未显示出先前随机故障可能允许网络从观察到的分布中采样,也称为炼肠或残留不确定性。两个分布的采样使概率推断,高效搜索和创造性或生成问题解决。我们证明,在基于人口码的神经活动的解释下,可以用单独的突触衰竭来表示和对两种类型的分布进行分布。我们首先通过突触故障和横向抑制来定义生物学限制的神经网络和采样方案。在该框架内,我们派生基于辍学的认知不确定性,然后从突触功效证明了允许网络从任意,由接收层表示的分布来释放概率的分析映射。其次,我们的结果导致了本地学习规则,突触将适应其发布概率。我们的结果表明,在生物学限制的网络中,仅使用本地学习的突触失败率,与变分的贝叶斯推断相关的完整贝叶斯推断。
translated by 谷歌翻译
神经生成模型可用于学习从数据的复杂概率分布,从它们中进行采样,并产生概率密度估计。我们提出了一种用于开发由大脑预测处理理论启发的神经生成模型的计算框架。根据预测加工理论,大脑中的神经元形成一个层次结构,其中一个级别的神经元形成关于来自另一个层次的感觉输入的期望。这些神经元根据其期望与观察到的信号之间的差异更新其本地模型。以类似的方式,我们的生成模型中的人造神经元预测了邻近的神经元的作用,并根据预测匹配现实的程度来调整它们的参数。在这项工作中,我们表明,在我们的框架内学到的神经生成模型在练习中跨越多个基准数据集和度量来表现良好,并且保持竞争或显着优于具有类似功能的其他生成模型(例如变形自动编码器)。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
学习涉及时变和不断发展的系统动态的控制政策通常对主流强化学习算法构成了巨大的挑战。在大多数标准方法中,通常认为动作是一组刚性的,固定的选择,这些选择以预定义的方式顺序应用于状态空间。因此,在不诉诸于重大学习过程的情况下,学识渊博的政策缺乏适应动作集和动作的“行为”结果的能力。此外,标准行动表示和动作引起的状态过渡机制固有地限制了如何将强化学习应用于复杂的现实世界应用中,这主要是由于所得大的状态空间的棘手性以及缺乏概括的学术知识对国家空间未知部分的政策。本文提出了一个贝叶斯味的广义增强学习框架,首先建立参数动作模型的概念,以更好地应对不确定性和流体动作行为,然后将增强领域的概念作为物理启发的结构引入通过“极化体验颗粒颗粒建立) “维持在学习代理的工作记忆中。这些粒子有效地编码了以自组织方式随时间演变的动态学习体验。在强化领域之上,我们将进一步概括策略学习过程,以通过将过去的记忆视为具有隐式图结构来结合高级决策概念,在该结构中,过去的内存实例(或粒子)与决策之间的相似性相互联系。定义,因此,可以应用“关联记忆”原则来增强学习代理的世界模型。
translated by 谷歌翻译
Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to wellinformed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.
translated by 谷歌翻译
映射近场污染物的浓度对于跟踪城市地区意外有毒羽状分散体至关重要。通过求解大部分湍流谱,大型模拟(LES)具有准确表示污染物浓度空间变异性的潜力。找到一种合成大量信息的方法,以提高低保真操作模型的准确性(例如,提供更好的湍流封闭条款)特别有吸引力。这是一个挑战,在多质量环境中,LES的部署成本高昂,以了解羽流和示踪剂分散如何随着各种大气和源参数的变化。为了克服这个问题,我们提出了一个合并正交分解(POD)和高斯过程回归(GPR)的非侵入性降低阶模型,以预测与示踪剂浓度相关的LES现场统计。通过最大的后验(MAP)过程,GPR HyperParameter是通过POD告知的最大后验(MAP)过程来优化组件的。我们在二维案例研究上提供了详细的分析,该案例研究对应于表面安装的障碍物上的湍流大气边界层流。我们表明,障碍物上游的近源浓度异质性需要大量的POD模式才能得到充分捕获。我们还表明,逐组分的优化允许捕获POD模式中的空间尺度范围,尤其是高阶模式中较短的浓度模式。如果学习数据库由至少五十至100个LES快照制成,则可以首先估算所需的预算,以朝着更逼真的大气分散应用程序迈进,因此减少订单模型的预测仍然可以接受。
translated by 谷歌翻译