越来越承认,具有多种模型参数的计划研究的先验统计功率估计本质上是多变量问题。对于个人感兴趣的各个参数的电源无法可靠地估计,因为相对于一个参数的可变地,与一个参数进行相关性和方差,将影响另一个参数的权力,所有通常的单变量的考虑因素都是平等的。在这种情况下,特别是对于具有许多参数的模型的明确解决方案是不切实际或无法解决的,将研究人员与模拟功率的普遍方法进行。然而,模型参数矢量的点估计是不确定的,并且不准确的影响是未知的。在这种情况下,建议使用灵敏度分析,使得模拟可能的可观察参数向量的多种组合以了解电力折衷。对这种方法的限制是,它可以计算得昂贵的昂贵的组合,以便在社会科学家估计的模型中精确地映射越来越高的尺寸空间中的电力折衷功能。本文探讨了对不同模型参数组合的研究的有效估计和绘图。最佳地通电研究对于确保找到假设效果的最小可能性是至关重要的。我们首先展示改变参数值对特定假设的功率的影响,并在给定的精度水平上量化计算这种图的计算强度。最后,我们提出了一种简单宽大的机器学习灵感的解决方案,将计算成本降低到少于7 \%的可能被称为蛮力方法。 [简略]
translated by 谷歌翻译
统计能力是对假设检验的优点/强度的度量。正式地,如果存在真实的效果,则是检测效果的概率。因此,需要优化统计能力作为假设检验的某些参数的函数。但是,对于大多数假设检验,统计功率的显式功能形式是这些参数的函数是未知的,但是使用模拟实验可以计算给定值集值的统计功率。这些模拟实验通常在计算上很昂贵。因此,使用模拟开发整个统计功率歧管可能非常耗时。由此激励,我们提出了一种基于遗传算法的新型统计功率歧管框架。对于多个线性回归$ f $检验,我们表明所提出的算法/框架与蛮力方法相比,随着电源甲骨文的查询数量大大减少,统计功率歧管的速度要快得多。我们还表明,随着遗传算法的增加,学习流形的质量会提高。
translated by 谷歌翻译
科学家经常使用观察时间序列数据来研究从气候变化到民间冲突再到大脑活动的复杂自然过程。但是对这些数据的回归分析通常假定简单的动态。深度学习的最新进展使从语音理解到核物理学再到竞争性游戏的复杂过程模型的表现实现了令人震惊的改进。但是深度学习通常不用于科学分析。在这里,我们通过证明可以使用深度学习,不仅可以模仿,而且可以分析复杂的过程,在保留可解释性的同时提供灵活的功能近似。我们的方法 - 连续时间反向逆转回归神经网络(CDRNN) - 放宽标准简化的假设(例如,线性,平稳性和同质性)对于许多自然系统来说是不可信的,并且可能会严重影响数据的解释。我们评估CDRNNS对人类语言处理,这是一个具有复杂连续动态的领域。我们证明了行为和神经影像数据中预测可能性的显着改善,我们表明CDRNN可以在探索性分析中灵活发现新型模式,在确认分析中对可能的混杂性提供强有力的控制,并打开否则就可以使用这些问题来进行研究,这些问题否则就可以使用这些问题来进行研究,而这些问题否则就可以使用这些问题进行研究,而这些问题否则就可以使用这些问题进行研究。观察数据。
translated by 谷歌翻译
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. These areas include text processing of internet documents, gene expression array analysis, and combinatorial chemistry. The objective of variable selection is three-fold: improving the prediction performance of the predictors, providing faster and more cost-effective predictors, and providing a better understanding of the underlying process that generated the data. The contributions of this special issue cover a wide range of aspects of such problems: providing a better definition of the objective function, feature construction, feature ranking, multivariate feature selection, efficient search methods, and feature validity assessment methods.
translated by 谷歌翻译
本文提出了一种基于图形的正则化回归估计器 - 分层特征回归(HFR) - 从机器学习和图论域名的洞察力调动洞察力,以估算线性回归的鲁棒参数。估计器构造一个监督的特征图,该监督特征图沿其边缘分解参数,首先调整常见变化并连续地将特殊性模式结合到拟合过程中。图形结构具有对组靶标的参数收缩的影响,其中收缩程度由肝异常的控制,并且基团组合物以及收缩靶数是内源性的。该方法提供了丰富的资源,以便在数据中的潜在效果结构的视觉探索,并与一系列经验和模拟回归任务的常用正则化技术面板相比,展示了良好的预测精度和多功能性。
translated by 谷歌翻译
这项研究的目的是评估历史匹配的潜力(HM),以调整具有多尺度动力学的气候系统。通过考虑玩具气候模型,即两尺度的Lorenz96模型并在完美模型设置中生产实验,我们详细探讨了如何需要仔细测试几种内置选择。我们还展示了在参数范围内引入物理专业知识的重要性,这是运行HM的先验性。最后,我们重新审视气候模型调整中的经典过程,该程序包括分别调整慢速和快速组件。通过在Lorenz96模型中这样做,我们说明了合理参数的非唯一性,并突出了从耦合中出现的指标的特异性。本文也有助于弥合不确定性量化,机器学习和气候建模的社区,这是通过在每个社区使用的术语之间建立相同概念的术语并提出有希望的合作途径,从而使气候建模研究受益。
translated by 谷歌翻译
在过去二十年中,识别具有不同纵向数据趋势的群体的方法已经成为跨越许多研究领域的兴趣。为了支持研究人员,我们总结了文献关于纵向聚类的指导。此外,我们提供了一种纵向聚类方法,包括基于基团的轨迹建模(GBTM),生长混合模拟(GMM)和纵向K平均值(KML)。该方法在基本级别引入,并列出了强度,限制和模型扩展。在最近数据收集的发展之后,将注意这些方法的适用性赋予密集的纵向数据(ILD)。我们展示了使用R.中可用的包在合成数据集上的应用程序的应用。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
特征选择是数据科学流水线的重要步骤,以减少与大型数据集相关的复杂性。虽然对本主题的研究侧重于优化预测性能,但很少研究在特征选择过程的上下文中调查稳定性。在这项研究中,我们介绍了重复的弹性网技术(租金)进行特色选择。租金使用具有弹性净正常化的广义线性模型的集合,每个训练都培训了训练数据的不同子集。该特征选择基于三个标准评估所有基本模型的重量分布。这一事实导致选择具有高稳定性的特征,从而提高最终模型的稳健性。此外,与已建立的特征选择器不同,租金提供了有关在训练期间难以预测的数据中难以预测的对象的模型解释的有价值信息。在我们的实验中,我们在八个多变量数据集中对六个已建立的特征选择器进行基准测试,用于二进制分类和回归。在实验比较中,租金在预测性能和稳定之间展示了均衡的权衡。最后,我们强调了租金的额外解释价值与医疗保健数据集的探索性后HOC分析。
translated by 谷歌翻译
包括机器学习在内的计算分析方法对基因组学和医学领域具有重大影响。高通量基因表达分析方法,例如微阵列技术和RNA测序产生大量数据。传统上,统计方法用于基因表达数据的比较分析。但是,针对样品观察分类或发现特征基因的分类的更复杂的分析需要复杂的计算方法。在这篇综述中,我们编译了用于分析表达微阵列数据的各种统计和计算工具。即使在表达微阵列的背景下讨论了这些方法,也可以将它们应用于RNA测序和定量蛋白质组学数据集的分析。我们讨论缺失价值的类型以及其插补中通常采用的方法和方法。我们还讨论了数据归一化,特征选择和特征提取的方法。最后,详细描述了分类和类发现方法及其评估参数。我们认为,这项详细的审查将帮助用户根据预期结果选择适当的方法来预处理和分析其数据。
translated by 谷歌翻译
Deep neural networks (DNNs) have demonstrated superior performance over classical machine learning to support many features in safety-critical systems. Although DNNs are now widely used in such systems (e.g., self driving cars), there is limited progress regarding automated support for functional safety analysis in DNN-based systems. For example, the identification of root causes of errors, to enable both risk analysis and DNN retraining, remains an open problem. In this paper, we propose SAFE, a black-box approach to automatically characterize the root causes of DNN errors. SAFE relies on a transfer learning model pre-trained on ImageNet to extract the features from error-inducing images. It then applies a density-based clustering algorithm to detect arbitrary shaped clusters of images modeling plausible causes of error. Last, clusters are used to effectively retrain and improve the DNN. The black-box nature of SAFE is motivated by our objective not to require changes or even access to the DNN internals to facilitate adoption.Experimental results show the superior ability of SAFE in identifying different root causes of DNN errors based on case studies in the automotive domain. It also yields significant improvements in DNN accuracy after retraining, while saving significant execution time and memory when compared to alternatives. CCS Concepts: • Software and its engineering → Software defect analysis; • Computing methodologies → Machine learning.
translated by 谷歌翻译
内核正规化最小二乘(KRLS)是一种流行的方法,用于灵活估算可能在变量之间具有复杂关系的模型。但是,其对许多研究人员的有用性受到限制,原因有两个。首先,现有的方法不灵活,不允许KRL与理论动机的扩展(例如固定效应或非线性结果)结合使用。其次,对于甚至适度尺寸的数据集,估计在计算上是非常强大的。我们的论文通过引入广义KRL(GKRL)来解决这两种问题。我们注意到,可以将KRLS重新构造为层次模型,从而允许轻松推理和模块化模型构建。在计算上,我们还实施随机草图以显着加速估计,同时估计质量的罚款有限。我们证明,GKRL可以在一分钟内进行数万观察到的数据集中。此外,可以迅速估计需要在十二次(例如元学习者)中安装模型的最新技术。
translated by 谷歌翻译
我们介绍了数据科学预测生命周期中各个阶段开发和采用自动化的技术和文化挑战的说明概述,从而将重点限制为使用结构化数据集的监督学习。此外,我们回顾了流行的开源Python工具,这些工具实施了针对自动化挑战的通用解决方案模式,并突出了我们认为进步仍然需要的差距。
translated by 谷歌翻译
聚类算法的全面基准是困难的两个关键因素:(i)〜这种无监督的学习方法的独特数学定义和(ii)〜某些聚类算法采用的生成模型或群集标准之间的依赖性的依赖性内部集群验证。因此,对严格基准测试的最佳做法没有达成共识,以及是否有可能在给定申请的背景之外。在这里,我们认为合成数据集必须继续在群集算法的评估中发挥重要作用,但这需要构建适当地涵盖影响聚类算法性能的各种属性集的基准。通过我们的框架,我们展示了重要的角色进化算法,以支持灵活的这种基准,允许简单的修改和扩展。我们说明了我们框架的两种可能用途:(i)〜基准数据的演变与一组手派生属性和(ii)〜生成梳理给定对算法之间的性能差异的数据集。我们的作品对设计集群基准的设计具有足够挑战广泛算法的集群基准,并进一步了解特定方法的优势和弱点。
translated by 谷歌翻译
近年来,由于其在分析复杂的数据集(例如成像,遗传学,气候和医学数据)方面,深度学习一直是几乎所有学科的关注主题。虽然大多数开发被视为黑盒机器,但人们对适用于广泛应用程序的可解释,可靠和健壮的深度学习模型产生了越来越多的兴趣。事实证明,特征选择的深度学习在这方面是有希望的。但是,除了高噪声水平外,最近的发展并未解决超高维度和高度相关特征选择的情况。在本文中,我们提出了一种新颖的筛查和清洁策略,并在深度学习的帮助下,以控制错误率的高度相关预测指标的集群级别的发现。对广泛的模拟场景进行了彻底的经验评估,通过实现高功率,同时具有最少的错误发现,证明了该方法的有效性。此外,我们在理解与核黄素生产的遗传关联的背景下,在核黄素(维生素$ b_2 $)生产数据集中实施了算法。与其他最新方法相比,通过达到较低的预测误差来说明所提出的方法的增益。
translated by 谷歌翻译
推断线性关系是许多实证研究的核心。线性依赖性的度量应正确评估关系的强度,并符合对人群的有意义。 Pearson的相关系数(PCC)是双变量关系的\ textit {De-facto}量度,这两个方面都缺乏。估计的强度$ r $可能是由于样本量有限和数据非正态而可能错误的。在统计显着性测试的背景下,将$ p $值作为后验概率的错误解释导致I型错误 - 这是一个具有显着性测试的一般问题,扩展到PCC。同时测试多个假设时,此类错误会加剧。为了解决这些问题,我们提出了一种基于机器学习的预测数据校准方法,从本质上讲,该方法在预期的线性关系上进行了研究。使用校准数据计算PCC会产生校准的$ P $值,可以将其解释为后验概率以及校准的$ r $估计值,这是其他方法未提供的所需结果。此外,随之而来的对每个测试的独立解释可能会消除对多次测试校正的需求。我们提供了使用多个模拟和对现实世界数据的应用,有利于提出的方法的经验证据。
translated by 谷歌翻译
估计变量的重要性是现代机器学习的重要任务。这有助于评估给定模型中功能的优点。在过去的十年中,已经开发了几种估计变量重要性的技术。在本文中,我们提出了对可变重要性估计的新兴方法的计算和理论探索,即:绝对收缩和选择操作员(LASSO),支持向量机(SVM),预测误差函数(Perf),随机森林(随机森林)( RF)和极端梯度提升(XGBOOST)在不同类型的现实生活和模拟数据上进行了测试。所有这些方法都可以无缝处理回归和分类任务,但是在处理包含丢失值的数据时都失败了。该实现表明,在高度相关数据的情况下,PURD具有最佳性能,紧随其后的是RF。 perf和xgboost是“渴望数据”的方法,它们在小数据尺寸上的性能最差,但在执行时间方面它们是最快的。当数据集中许多冗余功能时,SVM是最合适的。 perf的盈余是其自然截止量的零截止,有助于将正面和负分数分开,所有正分数表明基本和重要的特征,而负面分数表示无用的特征。 RF和Lasso的通用性非常多,尽管它们没有给予最佳效果,但它们几乎可以在所有情况下使用。
translated by 谷歌翻译
能源部门的深度脱碳将需要大量的随机可再生能源渗透和大量的网格资产协调。对于面对这种变化而负责维持电网稳定性和安全性的电力系统运营商来说,这是一个具有挑战性的范式。凭借从复杂数据集中学习并提供有关快速时间尺度的预测解决方案的能力,机器学习(ML)得到了很好的选择,可以帮助克服这些挑战,因为在未来几十年中,电力系统转变。在这项工作中,我们概述了与构建可信赖的ML模型相关的五个关键挑战(数据集生成,数据预处理,模型培训,模型评估和模型嵌入),这些模型从基于物理的仿真数据中学习。然后,我们演示如何将单个模块连接在一起,每个模块都克服了各自的挑战,在机器学习管道中的顺序阶段,如何有助于提高训练过程的整体性能。特别是,我们实施了通过反馈连接学习管道的不同元素的方法,从而在模型培训,绩效评估和重新训练之间“关闭循环”。我们通过学习与拟议的北海风能中心系统的详细模型相关的N-1小信号稳定性边缘来证明该框架,其组成模块的有效性及其反馈连接。
translated by 谷歌翻译
自动化的机器学习(AUTOML)过程可能需要通过不仅机器学习(ML)组件及其超参数的复杂配置空间进行搜索,还需要将它们组合在一起,即形成ML管道。如果该管道配置空间过大,那么固定时间预算可实现的优化效率和模型精度可实现。一个关键的研究问题是,通过利用其历史表现来完成各种ML任务(即元知识),避免对ML管道的不良评估是否可能既可能又实用。以前的经验以分类器/回归器准确性排名的形式来自(1)(1)在历史自动运行期间进行的大量但无尽的管道评估数量,即“机会性”元知识,或(2)全面的交叉 - 通过默认超参数(即“系统”的元知识,对分类器/回归器的验证评估。使用AUTOWEKA4MCPS软件包进行了许多实验,表明(1)机会性/系统的元知识可以改善ML的结果,通常与元知识的相关性以及(2)配置空间扣除在不太保守的情况下是最佳的(2)也不是激进的。但是,元知识的效用和影响急性取决于其发电和剥削的许多方面,并保证了广泛的分析;这些通常在汽车和元学习文献中被忽视/不足。特别是,我们观察到对数据集的“挑战”的强烈敏感性,即选择预测因子的特异性是否会导致性能明显更好。最终,确定这样定义的“困难”数据集对于生成信息丰富的元知识基础和理解最佳搜索空间降低策略至关重要。
translated by 谷歌翻译
研究兴趣大大增加了将数据驱动方法应用于力学问题的问题。尽管传统的机器学习(ML)方法已经实现了许多突破,但它们依赖于以下假设:培训(观察到的)数据和测试(看不见)数据是独立的且分布相同的(i.i.d)。因此,当应用于未知的测试环境和数据分布转移的现实世界力学问题时,传统的ML方法通常会崩溃。相反,分布(OOD)的概括假定测试数据可能会发生变化(即违反I.I.D.假设)。迄今为止,已经提出了多种方法来改善ML方法的OOD概括。但是,由于缺乏针对OOD回归问题的基准数据集,因此这些OOD方法在主导力学领域的回归问题上的效率仍然未知。为了解决这个问题,我们研究了机械回归问题的OOD泛化方法的性能。具体而言,我们确定了三个OOD问题:协变量移位,机制移位和采样偏差。对于每个问题,我们创建了两个基准示例,以扩展机械MNIST数据集收集,并研究了流行的OOD泛化方法在这些机械特定的回归问题上的性能。我们的数值实验表明,在大多数情况下,与传统的ML方法相比,在大多数情况下,在这些OOD问题上的传统ML方法的性能更好,但迫切需要开发更强大的OOD概括方法,这些方法在多个OOD场景中有效。总体而言,我们希望这项研究以及相关的开放访问基准数据集将进一步开发用于机械特定回归问题的OOD泛化方法。
translated by 谷歌翻译