位置编码对于视觉变压器(VIT)捕获输入图像的空间结构很重要。一般疗效已在VIT中得到证明。在我们的工作中,我们建议训练VIT以识别输入图像贴片的2D位置编码,这项显然简单的任务实际上产生了有意义的自我研究任务。基于对VIT位置编码的先前工作,我们提出了两个专用于2D图像的位置标签,包括绝对位置和相对位置。我们的位置标签可以轻松地插入变压器中,并结合各种当前VIT变体。它可以通过两种方式工作:1。作为Vanilla Vit(例如VIT-B和SWIN-B)的辅助培训目标,以提高模型性能。 2.结合自我监督的vit(例如,MAE),为语义特征学习提供了更强大的自我监督信号。实验表明,仅由于提出的自我监督方法,Swin-B和Vit-B分别在Mini-Imagenet上获得了1.9%(TOP-1 ACC)和5.6%(TOP-1 ACC)的改善。
translated by 谷歌翻译
变形金刚在自然语言处理方面取得了巨大的成功。由于变压器中自我发挥机制的强大能力,研究人员为各种计算机视觉任务(例如图像识别,对象检测,图像分割,姿势估计和3D重建)开发了视觉变压器。本文介绍了有关视觉变形金刚的不同建筑设计和培训技巧(包括自我监督的学习)文献的全面概述。我们的目标是为开放研究机会提供系统的审查。
translated by 谷歌翻译
由于具有强大的代表性,变形金刚在包括自然语言处理(NLP),计算机视觉和语音识别在内的广泛应用中越来越受欢迎。但是,利用这种代表性的能力有效地需要大量的数据,强大的正则化或两者兼而有之以减轻过度拟合。最近,基于掩盖的自动编码器的自我监督预处理策略已解锁了变压器的功能,这些策略依赖于直接或从未掩盖的内容对比的掩蔽输入进行重建。这种预训练的策略已在NLP中的BERT模型,Speak2VEC模型中使用,最近在Vision中的MAE模型中,该模型迫使该模型使用自动编码相关的目标来了解输入不同部分中的内容之间的关系。在本文中,我们提出了一种小说但令人惊讶的简单替代内容,以预测内容的位置,而无需为其提供位置信息。这样做需要变压器仅凭内容就可以理解输入不同部分之间的位置关系。这相当于有效的实现,其中借口任务是每个输入令牌所有可能位置之间的分类问题。我们在视觉和语音基准上进行了实验,我们的方法对强有力的监督训练基准进行了改进,并且与现代的无监督/自我监督预审方法相媲美。我们的方法还可以使经过训练的变压器在没有位置嵌入的情况下胜过训练有完整位置信息的训练的变压器。
translated by 谷歌翻译
最近,变形金刚在各种视觉任务中表现出了有希望的表现。变压器设计中的一个挑战性问题是,全球自我注意力非常昂贵,尤其是对于高分辨率视觉任务。局部自我注意力在局部区域内执行注意力计算以提高其效率,从而导致其在单个注意力层中的接受场不够大,从而导致上下文建模不足。在观察场景时,人类通常集中在局部区域,同时在粗粒度下参加非注意区域。基于这一观察结果,我们开发了轴向扩展的窗口自我发注意机制,该机制在局部窗口内执行精细颗粒的自我注意力,并在水平和垂直轴上进行粗粒度的自我注意力,因此可以有效地捕获短 - 远程视觉依赖性。
translated by 谷歌翻译
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train. 1
translated by 谷歌翻译
变压器建立在多头缩放的点产生关注和位置编码的基础上,旨在学习特征表示和令牌依赖性。在这项工作中,我们专注于通过学习通过变压器中的自我发项机制来增强特征图来增强独特的表示。具体而言,我们提出了水平的关注,以重新权重降低维度降低的点产量注意的多头输出,并提出垂直注意力以通过对不同的相互依赖性在不同的相互依赖性的方面自适应重新校准的频道响应,以使不同频道。我们证明了配备了两种专注的变压器模型在不同监督的学习任务中具有很高的概括能力,并具有较小的额外计算成本开销。提出的水平和垂直注意力是高度模块化的,可以将其插入各种变压器模型中,以进一步提高性能。我们的代码在补充材料中可用。
translated by 谷歌翻译
视觉多层感知器(MLP)在计算机视觉任务中表现出了有希望的表现,并成为CNNS和Vision Transformers的主要竞争对手。他们使用令牌混合层来捕获交叉互动,而不是变形金刚使用的多头自我发项机制。然而,严重的参数化令牌混合层自然缺乏捕获局部信息和多粒性非本地关系的机制,因此它们的判别能力受到限制。为了解决这个问题,我们提出了一个新的位置空间门控单元(POSGU)。它利用经典相对位置编码(RPE)中使用的注意力公式,以有效地编码令牌混合的交叉关系。它可以成功地将视觉MLP的当前二次参数复杂度$ O(n^2)$ $ O(n^2)$ o(n)$(n)$和$ o(1)$。我们实验了两种RPE机制,并进一步提出了一个小组扩展,以实现多种环境的成就,以提高其表现力。然后,它们是一种新型视觉MLP的关键构建块,称为POSMLP。我们通过进行彻底的实验来评估所提出的方法的有效性,证明参数复杂性的提高或可比性能得到了改善或可比性。例如,对于在ImagEnet1k上训练的模型,我们实现了从72.14 \%\%\%\%的绩效提高,并且可学习的参数从$ 194M $ $ $ $ $ $ $ $ 1.182亿美元。代码可以在\ href {https://github.com/zhicaiwww/posmlp} {https://github.com/zhicaiwww/posmlp}中找到代码。
translated by 谷歌翻译
对计算机视觉的自我监督学习取得了巨大的进步,并改善了许多下游视觉任务,例如图像分类,语义细分和对象检测。其中,诸如MAE和Beit之类的生成性自我监督的视力学习方法显示出令人鼓舞的表现。但是,它们的全球掩盖重建机制在计算上是要求的。为了解决这个问题,我们提出了本地蒙版重建(LOMAR),这是一种简单而有效的方法,在一个简单的变压器编码器上的7 $ \ times $ 7补丁中执行蒙版重建,从而提高了效率和准确性之间的权衡。在整个图像上全局掩盖重建。广泛的实验表明,Lomar在Imagenet-1K分类方面达到了84.1%的TOP-1准确性,优于MAE的MAE比0.5%。在以384 $ \ times $ 384的图像为审计的LOMAR进行了预审经后,它可以达到85.4%的TOP-1准确性,超过MAE的0.6%。在MS Coco上,Lomar在0.5 $ \ text {ap}^\ text {box} $上以0.5 $ \ text {ap}^\ text {box} $的优势在对象检测上和0.5 $ \ text {ap}^\ text^\ text {bask} $上的实例段上。 Lomar在预处理的高分辨率图像上特别有效,例如,它比MAE快3.1 $ \ times $,分类准确性为448 $ \ times $ 448 $ 448。这种本地掩盖的重建学习机制可以轻松地集成到任何其他生成的自我监督学习方法中。我们的代码可在https://github.com/junchen14/lomar中公开获得。
translated by 谷歌翻译
在这项研究中,我们提出了混合图像建模(MixMim),这是一种适用于各种分层视觉变压器的简单但有效的MIM方法。现有的MIM方法用特殊的掩码符号替换输入令牌的随机子集,并旨在从损坏的图像中重建原始图像令牌。但是,我们发现,由于较大的掩蔽率(例如,Beit中的40%),使用蒙版符号会大大减慢训练并引起训练 - 不一致的不一致。相比之下,我们用另一个图像的可见令牌(即创建混合图像)代替一个图像的蒙版令牌。然后,我们进行双重重建以从混合输入中重建原始的两个图像,从而显着提高效率。虽然MixMim可以应用于各种体系结构,但本文探讨了更简单但更强的层次变压器,并使用MixMim -B,-L和-H缩放。经验结果表明,混合mim可以有效地学习高质量的视觉表示。值得注意的是,具有88M参数的MixMIM-B通过预处理600个时期的Imagenet-1k上的TOP-1精度达到了85.1%的TOP-1精度,在MIM方法中为具有可比模型尺寸(例如VIT-B)的神经网络创造了新的记录。此外,其在其他6个数据集上的传输性能显示MixMim比以前的MIM方法更好。代码可从https://github.com/sense-x/mixmim获得。
translated by 谷歌翻译
在语言领域取得成功之后,自我发挥机制(变压器)在视觉领域采用并取得了巨大的成功。此外,作为另一个流中的多层感知器(MLP),也在视觉域中探索。除传统CNN以外,这些架构最近引起了人们的关注,并提出了许多方法。作为将参数效率和性能与图像识别中的局部性和层次结合在一起的一种,我们提出了将两个流合并的GSWIN。Swin Transformer和(多头)GMLP。我们表明,与具有较小模型大小的SWIN Transformer相比,GSWIN可以在三个视觉任务,图像分类,对象检测和语义分割方面实现更好的准确性。
translated by 谷歌翻译
在本文中,我们提出了一种使用CNN和变压器结构融合以提高图像分类性能的方法。对于CNN,可以很好地提取有关图像上局部区域的信息,但是限制了全局信息的提取。另一方面,变压器在相对全局的提取方面具有优势,但缺点是因为它需要大量的内存来进行本地特征值提取。在图像的情况下,它通过CNN转换为特征映射,每个特征映射的像素都被视为令牌。同时,将图像分为贴片区域,然后与将其视为令牌视图的变压器方法融合在一起。对于令牌与两个不同特征的融合,我们提出了三种方法:(1)具有平行结构的晚令融合,(2)早期令牌融合,(3)逐层中的令牌融合。在使用Imagenet 1K的实验中,提出的方法显示了最佳的分类性能。
translated by 谷歌翻译
The combination of transformers and masked image modeling (MIM) pre-training framework has shown great potential in various vision tasks. However, the pre-training computational budget is too heavy and withholds the MIM from becoming a practical training paradigm. This paper presents FastMIM, a simple and generic framework for expediting masked image modeling with the following two steps: (i) pre-training vision backbones with low-resolution input images; and (ii) reconstructing Histograms of Oriented Gradients (HOG) feature instead of original RGB values of the input images. In addition, we propose FastMIM-P to progressively enlarge the input resolution during pre-training stage to further enhance the transfer results of models with high capacity. We point out that: (i) a wide range of input resolutions in pre-training phase can lead to similar performances in fine-tuning phase and downstream tasks such as detection and segmentation; (ii) the shallow layers of encoder are more important during pre-training and discarding last several layers can speed up the training stage with no harm to fine-tuning performance; (iii) the decoder should match the size of selected network; and (iv) HOG is more stable than RGB values when resolution transfers;. Equipped with FastMIM, all kinds of vision backbones can be pre-trained in an efficient way. For example, we can achieve 83.8%/84.1% top-1 accuracy on ImageNet-1K with ViT-B/Swin-B as backbones. Compared to previous relevant approaches, we can achieve comparable or better top-1 accuracy while accelerate the training procedure by $\sim$5$\times$. Code can be found in https://github.com/ggjy/FastMIM.pytorch.
translated by 谷歌翻译
Zigzag flattening (ZF) is commonly utilized as a default option to get the image patches ordering in deep models, e.g. vision transformers (ViTs). Notably, when decomposing multi-scale images, ZF could not maintain the invariance of feature point positions.To this end, we investigate the Hilbert flattening (HF) as an alternative for sequence ordering in vision tasks. HF has proven to be superior to other flatten approaches in maintaining spatial locality, when performing multi-scale transformations of dimensional space. In applications, we design a position encoding method based on HF, beating absolute position encoding non-trivially in Transformer architecture. It also can be used to feature down-sampling and feature/image interpolation. Extensive experiments demonstrate that it can yield consistent performance boosts for several popular architectures and applications. The code will be released upon acceptance.
translated by 谷歌翻译
We present the Group Propagation Vision Transformer (GPViT): a novel nonhierarchical (i.e. non-pyramidal) transformer model designed for general visual recognition with high-resolution features. High-resolution features (or tokens) are a natural fit for tasks that involve perceiving fine-grained details such as detection and segmentation, but exchanging global information between these features is expensive in memory and computation because of the way self-attention scales. We provide a highly efficient alternative Group Propagation Block (GP Block) to exchange global information. In each GP Block, features are first grouped together by a fixed number of learnable group tokens; we then perform Group Propagation where global information is exchanged between the grouped features; finally, global information in the updated grouped features is returned back to the image features through a transformer decoder. We evaluate GPViT on a variety of visual recognition tasks including image classification, semantic segmentation, object detection, and instance segmentation. Our method achieves significant performance gains over previous works across all tasks, especially on tasks that require high-resolution outputs, for example, our GPViT-L3 outperforms Swin Transformer-B by 2.0 mIoU on ADE20K semantic segmentation with only half as many parameters. Code and pre-trained models are available at https://github.com/ChenhongyiYang/GPViT .
translated by 谷歌翻译
视觉变换器(VTS)作为卷积网络(CNNS)的架构范式替代品。与CNN不同,VT可以捕获图像元素之间的全局关系,并且它们可能具有更大的表示容量。然而,缺乏典型的卷积电感偏差使这些模型比普通的CNN更饥饿。实际上,嵌入在CNN架构设计中的某些本地属性,在VTS中应该从样品中学习。在本文中,我们明确地分析了不同的VTS,比较了他们在小型训练制度中的鲁棒性,并且我们表明,尽管在想象中训练时具有可比的准确性,但它们在较小数据集上的性能可能很大程度上不同。此外,我们提出了一种自我监督的任务,可以从图像中提取其他信息,只有可忽略不计的计算开销。这项任务鼓励VTS学习图像内的空间关系,并使VT培训在训练数据稀缺时更加强劲。我们的任务与标准(监督)培训共同使用,它不依赖于特定的架构选择,因此它可以轻松插入现有的VTS。使用与不同的VTS和数据集进行广泛的评估,我们表明我们的方法可以改善(有时显着地)VTS的最终精度。我们的代码可用于:https://github.com/yhlleo/vts-droc。
translated by 谷歌翻译
视觉变压器(VIV)及其变体(例如,Swin,PVT)在各种计算机视觉任务中取得了巨大的成功,这是由于他们学习远程语境信息的能力。层标准化(LN)是这些模型中的必要成分。然而,我们发现普通LN在不同位置处的令牌幅度,因为它标准化每个令牌内的嵌入物。变压器难以捕获诱导偏压,例如用LN的图像中的位置上下文。我们通过提出新的标准化器,称为动态令牌归一化(DTN)来解决这个问题,其中归一化在每个令牌(令牌)和跨不同的标记(令牌互补)中执行归一化。 DTN有几个优点。首先,它基于统一的制定,因此可以代表各种现有的归一化方法。其次,DTN学习在令牌内部和令牌间的互联网上标准化令牌,使变换器能够捕获全局上下文信息和本地位置上下文。 {第三,通过简单地更换LN层,DTN可以容易地插入各种视觉变压器,例如VIT,SWIN,PVT,Levit,T2T-VIT,BIGBIRD和REPLERER。广泛的实验表明,配备DTN的变压器始终如一地优于基线模型,具有最小的额外参数和计算开销。例如,DTN优于0.5 \%$ 0.5 \%$ - $ 1.2 \%$ 1.2 \%$ top-1在Imagenet上的准确性,超过1.2 $ - $ 1.4 $ box ap在Coco基准测试的对象检测中,达到2.3 \%$ - $ 3.9 \%$ mce在ImageNet-C上的鲁棒性实验,在远程竞技场上长浪列表中的0.5 \%$ 0.8 \%$ 0.8 \%。}代码将在\ url {https://github.com/wqshao126/dtn}公开。
translated by 谷歌翻译
我们引入了一个自我监督的视觉表示模型BEIT,该模型代表来自图像变压器的双向编码器表示。在Bert在自然语言处理区域中开发后,我们提出了一项掩盖的图像建模任务,以预识视觉变压器。具体而言,每个图像在我们的预训练中具有两个视图,即图像贴片(例如16x16像素)和视觉令牌(即离散令牌)。我们首先将原始图像“将”“令牌化”到视觉令牌中。然后,我们随机掩盖了一些图像补丁并将其喂入骨干变压器中。预训练的目标是根据损坏的图像补丁恢复原始的视觉令牌。在预训练BEIT之后,我们通过将任务层附加在预审计的编码器上,直接通过将任务层附加到下游任务上的模型参数。图像分类和语义分割的实验结果表明,我们的模型通过以前的预训练方法实现了竞争结果。例如,基本大小的BEIT在Imagenet-1K上获得了83.2%的TOP-1精度,并以相同的设置优于划痕DEIT训练(81.8%)。此外,大尺寸的BEIT仅使用Imagenet-1K获得86.3%,即使在Imagenet-22K上进行预训练(85.2%),甚至超过了VIT-L。代码和预估计的模型可在https://aka.ms/beit上找到。
translated by 谷歌翻译
大规模数据集的预培训模型,如想象成,是计算机视觉中的标准实践。此范例对于具有小型培训套的任务特别有效,其中高容量模型往往会过度装备。在这项工作中,我们考虑一个自我监督的预训练场景,只能利用目标任务数据。我们考虑数据集,如斯坦福汽车,草图或可可,这是比想象成小的数量的顺序。我们的研究表明,在本文中介绍的Beit或诸如Beit或Variant的去噪对预训练数据的类型和大小比通过比较图像嵌入来训练的流行自我监督方法更加强大。我们获得了竞争性能与ImageNet预训练相比,来自不同域的各种分类数据集。在Coco上,当专注于使用Coco Images进行预训练时,检测和实例分割性能超过了可比设置中的监督Imagenet预训练。
translated by 谷歌翻译
最近,自我监督的蒙面自动编码器(MAE)因其令人印象深刻的表示能力而引起了前所未有的关注。但是,借口任务是掩盖的图像建模(MIM),重建缺失的本地贴片,缺乏对图像的全局理解。本文通过添加有监督的分类部门将MAE扩展到了完全监督的环境,从而使Mae可以从Golden Labels中有效地学习全球功能。所提出的监督MAE(Supmae)仅利用图像贴片的可见子集进行分类,这与使用所有图像贴片的标准监督预训练不同。通过实验,我们证明了Supmae不仅更有效地训练,而且还学会了更健壮和可转移的功能。具体而言,Supmae在使用VIT-B/16模型的ImageNet上评估时仅使用30%的计算来实现MAE的可比性。 Supmae对ImageNet变体的鲁棒性和转移学习绩效优于MAE和标准监督前培训对手。代码将公开可用。
translated by 谷歌翻译
Vision Transformers (ViTs) outperforms convolutional neural networks (CNNs) in several vision tasks with its global modeling capabilities. However, ViT lacks the inductive bias inherent to convolution making it require a large amount of data for training. This results in ViT not performing as well as CNNs on small datasets like medicine and science. We experimentally found that masked autoencoders (MAE) can make the transformer focus more on the image itself, thus alleviating the data-hungry issue of ViT to some extent. Yet the current MAE model is too complex resulting in over-fitting problems on small datasets. This leads to a gap between MAEs trained on small datasets and advanced CNNs models still. Therefore, we investigated how to reduce the decoder complexity in MAE and found a more suitable architectural configuration for it with small datasets. Besides, we additionally designed a location prediction task and a contrastive learning task to introduce localization and invariance characteristics for MAE. Our contrastive learning task not only enables the model to learn high-level visual information but also allows the training of MAE's class token. This is something that most MAE improvement efforts do not consider. Extensive experiments have shown that our method shows state-of-the-art performance on standard small datasets as well as medical datasets with few samples compared to the current popular masked image modeling (MIM) and vision transformers for small datasets.The code and models are available at https://github.com/Talented-Q/SDMAE.
translated by 谷歌翻译