我们提出了一种新的“泊松流”生成模型(PFGM),该模型将高维半球上的均匀分布映射到任何数据分布中。我们将数据点解释为$ z = 0 $超平面上的电荷,在增加额外尺寸$ z $的空间中,产生了高维电场(泊松方程解决方案的梯度)。我们证明,如果这些电荷沿电场线向上流动,则它们在$ z = 0 $平面中的初始分布将变成半径$ r $半球的分布,该分布在$ r \ to \ infty $限制中变成均匀。为了学习徒的转化,我们估计了增强空间中的归一化场。对于采样,我们设计了一种由物理上有意义的附加尺寸锚定的向后ode:当$ z $达到零时,样本击中了未加重的数据歧管。在实验上,PFGM在CIFAR-10上的正常流量模型中实现了当前的最新性能,其成立分数为9.68美元,而FID得分为2.48美元。它还可以与最先进的SDE方法相同,同时提供$ 10 \ times $至$ 20 \ $ 20 \ times $ $加速图像生成任务。此外,PFGM在较弱的网络体系结构上似乎更宽容估计误差,并且对Euler方法中的步骤大小稳健。该代码可在https://github.com/newbeeer/poisson_flow上找到。
translated by 谷歌翻译
我们提出了整流的流程,这是一种令人惊讶的简单学习方法(神经)的普通微分方程(ODE)模型,用于在两个经验观察到的分布\ pi_0和\ pi_1之间运输,因此为生成建模和域转移提供了统一的解决方案,以及其他各种任务。涉及分配运输。整流流的想法是学习ode,以遵循尽可能多的连接从\ pi_0和\ pi_1的直径。这是通过解决直接的非线性最小二乘优化问题来实现的,该问题可以轻松地缩放到大型模型,而无需在标准监督学习之外引入额外的参数。直径是特殊的,因此是特殊的,因为它们是两个点之间的最短路径,并且可以精确模拟而无需时间离散,因此可以在计算上产生高效的模型。我们表明,从数据(称为整流)中学习的整流流的过程将\ pi_0和\ pi_1的任意耦合转变为新的确定性耦合,并证明是非侵入的凸面运输成本。此外,递归应用矫正使我们能够获得具有越来越直的路径的流动序列,可以在推理阶段进行粗略的时间离散化来准确地模拟。在实证研究中,我们表明,整流流对图像产生,图像到图像翻译和域的适应性表现出色。特别是,在图像生成和翻译上,我们的方法几乎产生了几乎直流的流,即使是单个Euler离散步骤,也会产生高质量的结果。
translated by 谷歌翻译
尽管存在扩散模型的各种变化,但将线性扩散扩散到非线性扩散过程中仅由几项作品研究。非线性效应几乎没有被理解,但是直觉上,将有更多有希望的扩散模式来最佳地训练生成分布向数据分布。本文介绍了基于分数扩散模型的数据自适应和非线性扩散过程。提出的隐式非线性扩散模型(INDM)通过结合归一化流量和扩散过程来学习非线性扩散过程。具体而言,INDM通过通过流网络利用\ textIt {litex {litex {littent Space}的线性扩散来隐式构建\ textIt {data Space}的非线性扩散。由于非线性完全取决于流网络,因此该流网络是形成非线性扩散的关键。这种灵活的非线性是针对DDPM ++的非MLE训练,将INDM的学习曲线提高到了几乎最大的似然估计(MLE)训练,事实证明,这是具有身份流量的INDM的特殊情况。同样,训练非线性扩散可以通过离散的步骤大小产生采样鲁棒性。在实验中,INDM实现了Celeba的最新FID。
translated by 谷歌翻译
基于分数的生成模型(SGMS)已经证明了显着的合成质量。 SGMS依赖于扩散过程,逐渐将数据逐渐渗透到贸易分布,而生成式模型则学会去噪。除了数据分布本身,这种去噪任务的复杂性是由扩散过程独特地确定的。我们认为当前的SGMS采用过于简单的扩散,导致不必要的复杂的去噪流程,限制了生成的建模性能。根据与统计力学的联系,我们提出了一种新型危及阻尼Langevin扩散(CLD),并表明基于CLD的SGMS实现了优异的性能。 CLD可以被解释为在扩展空间中运行关节扩散,其中辅助变量可以被视为耦合到数据变量的“速度”,如Hamiltonian动态。我们推导了一种用于CLD的小说得分匹配目标,并表明该模型仅需要了解给定数据的速度分布的条件分布的得分函数,而不是直接学习数据的分数。我们还导出了一种新的采样方案,用于从基于CLD的扩散模型有效合成。我们发现CLD在类似的网络架构和采样计算预算中优于综合质量的先前SGM。我们展示我们的CLD的新型采样器显着优于欧拉 - 玛雅山等求解器。我们的框架为基于刻痕的去噪扩散模型提供了新的见解,并且可以随时用于高分辨率图像合成。项目页面和代码:https://nv-tlabs.github.io/cld-sgm。
translated by 谷歌翻译
基于分数的生成模型(SGMS)最近在样品质量和分配覆盖范围内表现出令人印象深刻的结果。但是,它们通常直接应用于数据空间,并且通常需要数千个网络评估来采样。在这里,我们提出了基于潜在的分数的生成模型(LSGM),这是一种在潜在空间中培训SGM的新方法,依赖于变分性AutoEncoder框架。从数据移动到潜伏空间允许我们培训更具表现力的生成模型,将SGMS应用于非连续数据,并在较小的空间中学习更顺畅的SGM,导致更少的网络评估和更快的采样。要以可扩展且稳定的方式启用培训LSGMS端到端,我们(i)我们(i)引入了适合于LSGM设置的新分数匹配目标,(ii)提出了一个新颖的分数函数参数化,允许SGM专注于关于简单正常的目标分布的不匹配,(III)分析了多种技术,用于减少训练目标的方差。 LSGM在CIFAR-10上获得最先进的FID分数为2.10,优先表现出此数据集的所有现有生成结果。在Celeba-HQ-256上,LSGM在样品质量上与先前的SGMS相同,同时以两个数量级的采样时间表现出来。在模拟二进制图像中,LSGM在二值化omniglot数据集上实现了最先进的可能性。我们的项目页面和代码可以在https://nvlabs.github.io/lsgm找到。
translated by 谷歌翻译
扩散概率模型(DPM)是新兴的强大生成模型。尽管具有高质量的生成性能,但DPM仍然遭受缓慢采样的苦难,因为它们通常需要数百或数千个大型神经网络的顺序函数评估(步骤)来绘制样本。可以将来自DPM的采样视为求解相应的扩散普通微分方程(ODE)。在这项工作中,我们提出了扩散ODE的溶液的精确表述。该公式通过分析计算解决方案的线性部分,而不是将所有术语留给先前工作中采用的黑盒ode求解器。通过应用可变化的更改,可以将解决方案等效地简化为神经网络的指数加权积分。根据我们的公式,我们提出了DPM-Solver,这是一种通过收敛顺序保证的快速专用高阶求解器。 DPM溶剂适用于离散时间和连续时间DPM,而无需进行任何进一步的培训。实验结果表明,DPM-Solver可以在各种数据集上的10至20个功能评估中生成高质量的样本。我们在10个功能评估中实现了4.70 FID,在CIFAR10数据集上进行20个功能评估中的2.87 FID,与以前的各种数据集中的先前最先进的无培训样本器相比,$ 4 \ sim 16 \ times $速度。
translated by 谷歌翻译
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a blackbox differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
translated by 谷歌翻译
可控生成是成功采用现实世界应用中深度生成模型的关键要求之一,但它仍然是一个巨大的挑战。特别地,产生新颖概念组合的组成能力对于大多数目前的模型来说是遥不可及的。在这项工作中,我们使用基于能量的模型(EBMS)来处理一组属性上的组成生成。为了使它们可扩展到高分辨率图像生成,我们在培训的前期生成模型等潜在空间中引入eBM,例如样式。我们提出了一种新的EBM制剂,代表数据和属性的联合分布在一起,我们展示了如何对其进行采样作为解决常规方程(ODE)。考虑到预先训练的生成器,我们需要可控生成的所有都是训练属性分类器。使用ODES采样是有效的在潜在的空间中完成,并且对HyperParameter具有稳健性。因此,我们的方法简单,速度快,并有效地样本。实验结果表明,我们的方法在条件采样和顺序编辑中表明了最先进的。在组成生成中,我们的方法在零拍摄生成的不均义属性组合中卓越。此外,通过用逻辑运算符组成能量函数,这项工作是第一个实现在发电量1024x1024的光处理图像中实现这种组成性的。代码可在https://github.com/nvlabs/lace中获得。
translated by 谷歌翻译
我们提出了一个首次击中扩散模型(FHDM)的家族,该模型是深层生成模型,该模型以扩散过程生成数据,该过程在随机的首次击中时间终止。这产生了在预先指定的确定性时间终止的标准固定时间扩散模型的扩展。尽管标准扩散模型是为连续不受约束的数据而设计的,但FHDM自然设计用于在连续以及一系列离散和结构域上学习分布。此外,FHDM启用依赖实例的终止时间,并加速扩散过程,以更少的扩散步骤采样更高质量的数据。从技术上讲,我们通过根据DOOB的$ h $转换得出的有条件的首次击中过程(即桥)来训练FHDM,以最大的似然估计从观察到的数据增强的扩散轨迹(即桥梁),从而偏离了常用的使用时间反转机制。我们应用FHDM在各个领域中生成数据,例如点云(一般连续分布),地球上的气候和地理事件(球体上的连续分布),未加权图(二进制矩阵的分布)以及2D图像的分割图(高度图像(高) - 二维分配)。我们观察到与质量和速度的最新方法相比,相比之下。
translated by 谷歌翻译
从非正规化概率分布的抽样是机器学习中的基本问题,包括贝叶斯建模,潜在因子推断和基于能源的模型训练。在几十年的研究之后,尽管收敛缓慢,但MCMC的变化仍然是抽样的默认方法。辅助神经模型可以学习加速MCMC,但训练额外模型的开销可能是禁止的。我们通过具有非牛顿势头的新的汉密尔顿动态提出了对这个问题的根本不同的方法。与MCMC蒙特卡洛等MCMC接近相比,不需要随机步骤。相反,在扩展状态空间中提出的确定性动态精确地对能量函数指定的目标分布,在ergodicity的假设下。或者,可以将动态解释为在没有训练的情况下对指定的能量模型进行采样的标准化流程。所提出的能量采样哈密尔顿(ESH)动态有一个简单的形式,可以用现有的颂歌解决,但我们推出了一个专业的求解器,它表现出更好的性能。 ESH Dynamics会收敛于其MCMC竞争对手的速度更快,更稳定地培训神经网络能量模型。
translated by 谷歌翻译
我们的目标是将denoisis扩散隐式模型(DDIM)扩展到一般扩散模型〜(DMS)。我们没有像原始DDIM论文那样构建非马尔科夫no噪声过程,而是从数值的角度研究了DDIM的机制。我们发现,在求解相应的随机微分方程时,可以通过使用分数的一些特定近似值来获得DDIM。我们提出了DDIM加速效应的解释,该解释还解释了确定性抽样方案的优势,而不是随机采样方案进行快速采样。在此洞察力的基础上,我们将DDIM扩展到一般的DMS,并在参数化分数网络时进行了小而微妙的修改。当应用于批判性抑制的Langevin扩散模型时,最近提出的一种新型的扩散模型通过以速度增强扩散过程,我们的算法在CIFAR10上达到了2.28的FID分数,仅具有50个数量的得分功能评估(NFES)(NFES〜(NFES) )和仅有27个NFE的FID分数为2.87,比所有具有相同NFE的现有方法要好。代码可从https://github.com/qsh-zh/gddim获得
translated by 谷歌翻译
过去的几年见证了扩散模型〜(DMS)在生成建模任务中生成高保真样本方面取得的巨大成功。 DM的主要局限性是其臭名昭著的缓慢采样程序,通常需要数百到数千至数千个的时间离散步骤,以达到所需的准确性。我们的目标是为DMS开发快速采样方法,该方法的步骤少得多,同时保留了高样本质量。为此,我们系统地分析了DMS中的采样程序,并确定影响样本质量的关键因素,其中离散化方法至关重要。通过仔细检查学习的扩散过程,我们提出了扩散指数积分取样器〜(DEIS)。它基于设计用于离散的普通微分方程(ODE)的指数积分器,并利用学习扩散过程的半线性结构来减少离散误差。所提出的方法可以应用于任何DMS,并可以在短短10个步骤中生成高保真样本。在我们的实验中,一个A6000 GPU大约需要3分钟才能从CIFAR10产生$ 50K $的图像。此外,通过直接使用预训练的DMS,当得分函数评估的数量〜(NFE)的数量有限时,我们实现了最先进的采样性能,例如,使用10 NFES,3.37 FID和9.74的4.17 FID,仅为9.74 CIFAR10上的15个NFE。代码可从https://github.com/qsh-zh/deis获得
translated by 谷歌翻译
计算科学和统计推断中的许多应用都需要计算有关具有未知归一化常数的复杂高维分布以及这些常数的估计。在这里,我们开发了一种基于从简单的基本分布生成样品,沿着速度场生成的流量运输的方法,并沿这些流程线执行平均值。这种非平衡重要性采样(NEIS)策略是直接实施的,可用于具有任意目标分布的计算。在理论方面,我们讨论了如何将速度场定制到目标,并建立所提出的估计器是一个完美的估计器,具有零变化。我们还通过将基本分布映射到目标上,通过传输图绘制了NEIS和方法之间的连接。在计算方面,我们展示了如何使用深度学习来代表神经网络,并将其训练为零方差最佳。这些结果在高维示例上进行了数值说明,我们表明训练速度场可以将NEIS估计量的方差降低至6个数量级,而不是Vanilla估计量。我们还表明,NEIS在这些示例上的表现要比NEAL的退火重要性采样(AIS)更好。
translated by 谷歌翻译
我们研究了一种基于对抗性训练(AT)的学习基于能量的模型(EBM)的新方法。我们表明(二进制)学习一种特殊的能量功能,可以模拟数据分布的支持,并且学习过程与基于MCMC的EBM的最大似然学习密切相关。我们进一步提出了改进的与AT生成建模的技术,并证明这种新方法能够产生多样化和现实的图像。除了具有竞争性的图像生成性能到明确的EBM外,研究的方法还可以稳定训练,非常适合图像翻译任务,并且表现出强大的分布外对抗性鲁棒性。我们的结果证明了AT生成建模方法的生存能力,表明AT是学习EBM的竞争性替代方法。
translated by 谷歌翻译
Schr \“ Odinger Bridge(SB)是一个熵调控的最佳运输问题,与基于评分的生成模型(SGM)相比,在深层生成模型中,人们对其数学灵活性受到了越来越多的关注。但是,是否尚不清楚优化原理是否仍然不清楚SB的涉及深层生成模型的现代培训,这些模型通常依赖于构建对数类似目标的目标。这提出了有关SB模型作为生成应用的原则替代方案的问题。在这项工作中,我们提供了一个新颖的计算框架,用于基于前向后的随机微分方程理论的SB模型的似然训练 - 随机最佳控制中出现了一种数学方法论,将SB的最佳条件转换为一组SDE。至关重要的是,这些SDE可用于构建SB的SB目标目标,以构建SB的可能性目标。令人惊讶的是,这将SGM的特殊情况概括为特殊情况。这导致了新的Opmimi Zation原理继承了相同的SB最优性,但并没有失去现代生成训练技术的应用,我们表明所得的训练算法在生成MNIST,CEELBA和CIFAR10的现实图像方面取得了可比的结果。我们的代码可在https://github.com/ghliu/sb-fbsde上找到。
translated by 谷歌翻译
Lipschitz regularized f-divergences are constructed by imposing a bound on the Lipschitz constant of the discriminator in the variational representation. They interpolate between the Wasserstein metric and f-divergences and provide a flexible family of loss functions for non-absolutely continuous (e.g. empirical) distributions, possibly with heavy tails. We construct Lipschitz regularized gradient flows on the space of probability measures based on these divergences. Examples of such gradient flows are Lipschitz regularized Fokker-Planck and porous medium partial differential equations (PDEs) for the Kullback-Leibler and alpha-divergences, respectively. The regularization corresponds to imposing a Courant-Friedrichs-Lewy numerical stability condition on the PDEs. For empirical measures, the Lipschitz regularization on gradient flows induces a numerically stable transporter/discriminator particle algorithm, where the generative particles are transported along the gradient of the discriminator. The gradient structure leads to a regularized Fisher information (particle kinetic energy) used to track the convergence of the algorithm. The Lipschitz regularized discriminator can be implemented via neural network spectral normalization and the particle algorithm generates approximate samples from possibly high-dimensional distributions known only from data. Notably, our particle algorithm can generate synthetic data even in small sample size regimes. A new data processing inequality for the regularized divergence allows us to combine our particle algorithm with representation learning, e.g. autoencoder architectures. The resulting algorithm yields markedly improved generative properties in terms of efficiency and quality of the synthetic samples. From a statistical mechanics perspective the encoding can be interpreted dynamically as learning a better mobility for the generative particles.
translated by 谷歌翻译
扩散模型的最新进展带来了图像生成任务的最新性能。然而,扩散模型的先前研究的经验结果意味着密度估计与样品产生性能之间存在逆相关性。本文研究了足够的经验证据,表明这种反相关发生,因为密度估计值显着造成了较小的扩散时间的贡献,而样品产生主要取决于大扩散时间。但是,在整个扩散时间内训练得分网络良好,因为损耗量表在每个扩散时间都显着不平衡。因此,为了成功训练,我们引入了软截断,这是一种普遍适用的扩散模型训练技术,将固定和静态截断的超参数软化为随机变量。在实验中,软截断可在CIFAR-10,Celeba,Celeba-HQ 256X256和STL-10数据集上实现最先进的性能。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
去噪扩散概率模型(DDPMS)在没有对抗性训练的情况下实现了高质量的图像生成,但它们需要模拟Markov链以产生样品的许多步骤。为了加速采样,我们呈现去噪扩散隐式模型(DDIM),更有效的迭代类隐式概率模型,具有与DDPM相同的培训过程。在DDPMS中,生成过程被定义为Markovian扩散过程的反向。我们构建一类导致相同的训练目标的非马尔可瓦夫扩散过程,但其反向过程可能会更快地采样。我们经验证明,与DDPM相比,DDIM可以生产高质量的样本10倍以上$ 50 \时间$ 50 \倍。允许我们缩小对样本质量的计算,并可以直接执行语义有意义的图像插值潜在的空间。
translated by 谷歌翻译
我们介绍了用于生成建模的广义能量模型(GEBM)。这些模型组合了两个训练有素的组件:基本分布(通常是隐式模型),可以在高维空间中学习具有低固有尺寸的数据的支持;和能量功能,优化学习支持的概率质量。能量函数和基座都共同构成了最终模型,与GANS不同,它仅保留基本分布(“发电机”)。通过在学习能量和基础之间交替进行培训GEBMS。我们表明,两种培训阶段都明确定义:通过最大化广义可能性来学习能量,并且由此产生的能源的损失提供了学习基础的信息梯度。可以通过MCMC获得来自训练模型的潜在空间的后部的样品,从而在该空间中找到产生更好的质量样本的区域。经验上,图像生成任务上的GEBM样本比来自学习发电机的图像更好,表明所有其他相同,GEBM将优于同样复杂性的GAN。当使用归一化流作为基础测量时,GEBMS成功地启动密度建模任务,返回相当的性能以直接相同网络的最大可能性。
translated by 谷歌翻译