Uyghur语音常常遇到辅音和元音减少,这可能导致Uyghur自动语音识别(ASR)的性能下降。我们最近提出的基于掩蔽的学习策略,电话遮蔽训练(PMT),减轻了这种现象在Uyghur Asr的影响。尽管PMT实现了显着改进,但由于PMT(音素)和建模单元(字件)的掩模单元之间的粒度不匹配,仍然存在进一步提升的空间。为了提高PMT的性能,我们提出了PMT(PM-MET)的多建模单元训练(MMUT)架构融合。 MUT框架的概念是将编码器分成两个部分,包括声学级表示(AF-TO-PLR)和音素级表示的声学特征序列(PLR-TO-WPLR)。它允许通过基于中间音素的CTC丢失来优化AF-To-PLR,以了解PMT带来的富音素级上下文信息。 UYGHUR ASR上的实验结果表明,该提出的方法显着改善,优于纯PMT(减少24.0至23.7,在Read-Test上,分别在口服检验中的38.4至36.8。我们还使用ESPNET1对960小时的LibrisPeech基准进行实验,该基准测试在没有LM Fusion的所有测试集上实现约10%的相对WER减少,与最新的ESPNET1预先训练的模型相比。
translated by 谷歌翻译
双重编码器结构成功地利用了两个特定语言的编码器(LSE)进行代码转换语音识别。由于LSE由两个预训练的语言特定模型(LSM)初始化,因此双编码器结构可以利用足够的单语言数据并捕获单个语言属性。但是,现有方法对LSE的语言没有限制,并且不足以针对LSM的语言知识。在本文中,我们提出了一种特定语言的特征辅助(LSCA)方法来减轻上述问题。具体来说,在培训期间,我们引入了两种特定语言的损失作为语言限制,并为其生成相应的语言目标。在解码过程中,我们通过组合两个LSM和混合模型的输出概率来考虑LSM的解码能力,以获得最终预测。实验表明,LSCA的训练或解码方法可以改善模型的性能。此外,通过组合LSCA的训练和解码方法,最佳结果可以在代码切换测试集上获得多达15.4%的相对误差。此外,该系统可以通过使用我们的方法来很好地处理代码转换语音识别任务,而无需额外的共享参数,甚至可以基于两个预训练的LSM进行重新训练。
translated by 谷歌翻译
利用上下文信息是提高对话自动语音识别(ASR)的性能的直观想法。以前的作品通常采用公认的历史话语假设作为前面的背景,这可能会偏向于由于不可避免的历史认可错误而导致的当前公认假设。为了避免此问题,我们提出了一个音频文本跨模式表示器,以直接从先前的语音中学习上下文表示。具体而言,它由两个与模态相关的编码器组成,从语音和相应的文本中提取高级潜在特征,以及一个跨模式编码器,旨在学习语音和文本之间的相关性。我们随机掩盖每种模式的一些输入令牌和输入序列。然后,在交叉模式编码器上使用模态级别的CTC损失进行令牌错失或模态失误预测。因此,该模型不仅捕获了特定模式中的双向上下文依赖性,还捕获了不同模态之间的关系。然后,在训练对话ASR系统的训练期间,提取器将被冻结以提取上述语音的文本表示,而该表示形式则用作通过注意机制将其作为供应给ASR解码器的上下文。拟议方法的有效性在几个普通话对话中得到了验证,并且在MagicData数据集中,达到了最高的字符错误率(CER)最高16%。
translated by 谷歌翻译
本文介绍了流媒体和非流定向晶体翻译的统一端到端帧工作。虽然非流媒体语音翻译的培训配方已经成熟,但尚未建立流媒体传播的食谱。在这项工作中,WEFOCUS在开发一个统一的模型(UNIST),它从基本组成部分的角度支持流媒体和非流媒体ST,包括培训目标,注意机制和解码政策。对最流行的语音到文本翻译基准数据集,MERE-C的实验表明,与媒体ST的BLEU评分和延迟度量有更好的折衷和液化标准端到端基线和级联模型。我们将公开提供我们的代码和评估工具。
translated by 谷歌翻译
最近,语音界正在看到从基于深神经网络的混合模型移动到自动语音识别(ASR)的端到端(E2E)建模的显着趋势。虽然E2E模型在大多数基准测试中实现最先进的,但在ASR精度方面,混合模型仍然在当前的大部分商业ASR系统中使用。有很多实际的因素会影响生产模型部署决定。传统的混合模型,用于数十年的生产优化,通常擅长这些因素。在不为所有这些因素提供优异的解决方案,E2E模型很难被广泛商业化。在本文中,我们将概述最近的E2E模型的进步,专注于解决行业视角的挑战技术。
translated by 谷歌翻译
最近,我们提供了Wenet,这是一种面向生产的端到端语音识别工具包,它引入了统一的两通道(U2)框架和内置运行时,以解决单个中的流和非流传输模式。模型。为了进一步提高ASR性能并促进各种生产要求,在本文中,我们提出了Wenet 2.0,并提供四个重要的更新。 (1)我们提出了U2 ++,这是一个带有双向注意解码器的统一的两次通行框架,其中包括通过左右注意力解码器的未来上下文信息,以提高共享编码器的代表性和在夺回阶段的表现。 (2)我们将基于N-Gram的语言模型和基于WFST的解码器引入WENET 2.0,从而促进了在生产方案中使用丰富的文本数据。 (3)我们设计了一个统一的上下文偏见框架,该框架利用特定于用户的上下文(例如联系人列表)为生产提供快速适应能力,并提高了使用LM和没有LM场景的ASR准确性。 (4)我们设计了一个统一的IO,以支持大规模数据进行有效的模型培训。总而言之,全新的WENET 2.0可在各种Corpora上的原始WENET上取得高达10 \%的相对识别性能提高,并提供了一些重要的以生产为导向的功能。
translated by 谷歌翻译
最近,卷积增强的变压器(构象异构体)在自动语音识别(ASR)中显示出令人鼓舞的结果,表现优于先前发表的最佳变压器传感器。在这项工作中,我们认为编码器和解码器中每个块的输出信息并不完全包容,换句话说,它们的输出信息可能是互补的。我们研究如何以参数效率的方式利用每个块的互补信息,并且可以预期这可能会导致更强的性能。因此,我们提出了刻板的变压器以进行语音识别,名为BlockFormer。我们已经实现了两个块集合方法:块输出的基本加权总和(基本WSBO),以及挤压和激气模块到块输出的加权总和(SE-WSBO)。实验已经证明,阻滞剂在Aishell-1上大大优于基于最新的构象模型,我们的模型在不使用语言模型的情况下达到了4.35 \%的CER,并且在4.10 \%上具有外部语言模型的4.10 \%测试集。
translated by 谷歌翻译
代码转换是关于在通信过程中处理替代语言。训练端到端(E2E)自动语音识别(ASR)系统用于代码开关是一个充满挑战的问题,因为由于存在多种语言,因此缺乏增加语言上下文混乱的数据加剧的数据。在本文中,我们提出了一种与语言相关的注意机制,以减少基于等价约束理论(EC)的E2E代码转换ASR模型的多语言上下文混乱。语言理论要求在代码转换句子中发生的任何单语片段都必须发生在一个单语句子中。它在单语言数据和代码转换数据之间建立了一个桥梁。通过计算多种语言的各自注意力,我们的方法可以从丰富的单语言数据中有效地传输语言知识。我们在ASRU 2019-English代码转换挑战数据集上评估我们的方法。与基线模型相比,提出的方法可实现11.37%的相对混合错误率降低。
translated by 谷歌翻译
This paper introduces a new open source platform for end-toend speech processing named ESPnet. ESPnet mainly focuses on end-to-end automatic speech recognition (ASR), and adopts widely-used dynamic neural network toolkits, Chainer and Py-Torch, as a main deep learning engine. ESPnet also follows the Kaldi ASR toolkit style for data processing, feature extraction/format, and recipes to provide a complete setup for speech recognition and other speech processing experiments. This paper explains a major architecture of this software platform, several important functionalities, which differentiate ESPnet from other open source ASR toolkits, and experimental results with major ASR benchmarks.
translated by 谷歌翻译
在自动语音识别(ASR)研究中,歧视性标准在DNN-HMM系统中取得了出色的性能。鉴于这一成功,采用判别标准是有望提高端到端(E2E)ASR系统的性能。有了这一动机,以前的作品将最小贝叶斯风险(MBR,歧视性标准之一)引入了E2E ASR系统中。但是,基于MBR的方法的有效性和效率受到损害:MBR标准仅用于系统培训,这在训练和解码之间造成了不匹配;基于MBR的方法中的直接解码过程导致需要预先训练的模型和缓慢的训练速度。为此,在这项工作中提出了新的算法,以整合另一种广泛使用的判别标准,无晶格的最大互信息(LF-MMI),不仅在训练阶段,而且在解码过程中。提出的LF-MI训练和解码方法显示了它们对两个广泛使用的E2E框架的有效性:基于注意力的编码器解码器(AEDS)和神经传感器(NTS)。与基于MBR的方法相比,提出的LF-MMI方法:保持训练和解码之间的一致性;避开直立的解码过程;来自具有卓越训练效率的随机初始化模型的火车。实验表明,LF-MI方法的表现优于其MBR对应物,并始终导致各种框架和数据集从30小时到14.3k小时上的统计学意义改进。所提出的方法在Aishell-1(CER 4.10%)和Aishell-2(CER 5.02%)数据集上实现了最先进的结果(SOTA)。代码已发布。
translated by 谷歌翻译
以前的研究已经证实了利用明晰度信息达到改善的语音增强(SE)性能的有效性。通过使用铰接特征的地点/方式增强原始声学特征,可以引导SE过程考虑执行增强时输入语音的剖视特性。因此,我们认为关节属性的上下文信息应包括有用的信息,并可以进一步利用不同的语言。在这项研究中,我们提出了一个SE系统,通过优化英语和普通话的增强演讲中的上下文清晰度信息来提高其性能。我们通过联合列车与端到端的自动语音识别(E2E ASR)模型进行联合列车,预测广播序列(BPC)而不是单词序列的序列。同时,开发了两种培训策略,以基于基于BPC的ASR:多任务学习和深度特征培训策略来培训SE系统。 Timit和TMhint DataSet上的实验结果证实了上下文化学信息促进了SE系统,以实现比传统声学模型(AM)更好的结果。此外,与用单声道ASR培训的另一SE系统相比,基于BPC的ASR(提供上下文化学信息)可以在不同的信噪比(SNR)下更有效地改善SE性能。
translated by 谷歌翻译
代码切换(CS)是多语言社区中的常见语言现象,其包括在说话时在语言之间切换。本文提出了我们对普通话 - 英语CS演讲的结束地理识别的调查。我们分析了不同的CS特定问题,例如CS语言对中语言之间的属性不匹配,切换点的不可预测性质,以及数据稀缺问题。通过使用分层Softmax的语言识别通过建模子字单元来利用非语言识别来利用非统计符号来利用和改善最先进的端到端系统,通过人为地降低说话率,并通过使用增强数据来实现子字单元。使用速度扰动技术和几个单机数据集不仅可以在CS语音上提高最终性能,还可以在单​​格式基准上,以使系统更适用于现实生活环境。最后,我们探讨了不同语言模型集成方法对提出模型性能的影响。我们的实验结果表明,所有提出的技术都提高了识别性能。最佳组合系统在混合误差率方面将基线系统提高到35%,并在单机基准上提供可接受的性能。
translated by 谷歌翻译
在我们以前的工作中,我们提出了一个歧视性自动编码器(DCAE)进行语音识别。 DCAE将两个训练方案结合在一起。首先,由于DCAE的目标是学习编码器映射,因此重建语音和输入语音之间的平方误差被最小化。其次,在代码层中,基于框架的语音嵌入是通过最小化地面真相标签和预测的Triphone-State分数之间的分类跨熵来获得的。 DCAE是根据Kaldi工具包开发的,通过将各种TDNN模型视为编码器。在本文中,我们进一步提出了三个新版本的DCAE。首先,使用了一个新的目标函数,该函数使用了地面真相和预测的Triphone-State序列之间的分类跨膜和相互信息。所得的DCAE称为基于链的DCAE(C-DCAE)。为了应用于强大的语音识别,我们将C-DCAE进一步扩展到层次结构和平行结构,从而导致HC-DCAE和PC-DCAE。在这两个模型中,重建的嘈杂语音与输入嘈杂语音以及增强语音和参考清洁语音之间的误差之间的误差都归功于目标函数。 WSJ和Aurora-4 Corpora的实验结果表明,我们的DCAE模型优于基线系统。
translated by 谷歌翻译
In this paper, we propose a novel multi-modal multi-task encoder-decoder pre-training framework (MMSpeech) for Mandarin automatic speech recognition (ASR), which employs both unlabeled speech and text data. The main difficulty in speech-text joint pre-training comes from the significant difference between speech and text modalities, especially for Mandarin speech and text. Unlike English and other languages with an alphabetic writing system, Mandarin uses an ideographic writing system where character and sound are not tightly mapped to one another. Therefore, we propose to introduce the phoneme modality into pre-training, which can help capture modality-invariant information between Mandarin speech and text. Specifically, we employ a multi-task learning framework including five self-supervised and supervised tasks with speech and text data. For end-to-end pre-training, we introduce self-supervised speech-to-pseudo-codes (S2C) and phoneme-to-text (P2T) tasks utilizing unlabeled speech and text data, where speech-pseudo-codes pairs and phoneme-text pairs are a supplement to the supervised speech-text pairs. To train the encoder to learn better speech representation, we introduce self-supervised masked speech prediction (MSP) and supervised phoneme prediction (PP) tasks to learn to map speech into phonemes. Besides, we directly add the downstream supervised speech-to-text (S2T) task into the pre-training process, which can further improve the pre-training performance and achieve better recognition results even without fine-tuning. Experiments on AISHELL-1 show that our proposed method achieves state-of-the-art performance, with a more than 40% relative improvement compared with other pre-training methods.
translated by 谷歌翻译
通道不匹配和噪声干扰的补偿对于强大的自动语音识别至关重要。增强的语音已引入声学模型的多条件训练中,以提高其概括能力。在本文中,提出了一个基于两个级联神经结构的噪音感知训练框架,以共同优化语音增强和语音识别。功能增强模块由多任务自动编码器组成,嘈杂的语音被分解为干净的语音和噪声。通过将其增强的,吸引噪音的和嘈杂的特征连接起来,通过优化预测的无晶格最大互信息和预测状态序列之间的无晶格最大互助和交叉熵,声音模块将每个特征型仪表型映射到Triphone状态。除了分解时间延迟神经网络(TDNN-F)及其卷积变体(CNN-TDNNF),均具有Specaug,两个提议的系统的单词错误率(WER)分别为3.90%和3.55% Aurora-4任务。与使用BigRAM和Trigram语言模型进行解码的最佳现有系统相比,拟议的基于CNN-TDNNF的系统的相对降低分别为15.20%和33.53%。此外,提出的基于CNN-TDNNF的系统还优于AMI任务上的基线CNN-TDNNF系统。
translated by 谷歌翻译
语音的视频录制包含相关的音频和视觉信息,为语音表示从扬声器的唇部运动和产生的声音提供了强大的信号。我们介绍了视听隐藏单元BERT(AV-HUBERT),是视听语音的自我监督的代表学习框架,这些屏幕屏蔽了多流视频输入并预测自动发现和迭代地精制多模式隐藏单元。 AV-HUBERT学习强大的视听语音表示,这些语音表示受益于唇读和自动语音识别。在最大的公众唇读基准LRS3(433小时)中,AV-Hubert达到32.5%WER,只有30个小时的标签数据,优于前一种最先进的方法(33.6%)培训,达到了一千次转录的视频数据(31k小时)。当使用来自LRS3的所有433小时的标记数据并结合自培训时,唇读WER进一步降低至26.9%。使用我们在相同的基准测试中使用您的视听表示,用于音频语音识别的相对效率为40%,而最先进的性能(1.3%Vs 2.3%)。我们的代码和模型可在https://github.com/facebookResearch/av_hubert获得
translated by 谷歌翻译
关节特征本质上是声信号失真的不变,并且已成功地纳入了为正常语音设计的自动语音识别(ASR)系统。它们在非典型任务领域(例如老年人和跨语言的言语无序)的实际应用通常受到从目标扬声器收集此类专家数据的困难。本文介绍了一种跨域和跨语性A2A反演方法,该方法利用了A2A模型中24小时TAL Corpus的平行音频,视觉和超声舌成像(UTI)数据,然后进行交叉训练和交叉训练。语言适用于两种语言的三个数据集:英语dementiabank pitt和antonese JCCOCC MOCA老年演讲Corpora;以及英语Torgo违反语音数据,以产生基于UTI的发音特征。 Experiments conducted on three tasks suggested incorporating the generated articulatory features consistently outperformed the baseline hybrid TDNN and Conformer based end-to-end systems constructed using acoustic features only by statistically significant word error rate or character error rate reductions up to 2.64%, 1.92% and数据增强和说话者适应后,绝对4.17%,7.89%和13.28%相对1.21%。
translated by 谷歌翻译
最近,端到端(E2E)框架在各种自动语音识别(ASR)任务上取得了显着的结果。但是,无格的最大互信息(LF-MMI),作为在混合ASR系统中显示出卓越性能的鉴别性培训标准之一,很少在E2E ASR框架中采用。在这项工作中,我们提出了一种新的方法,将LF-MMI标准集成到培训和解码阶段的E2E ASR框架中。该方法显示了其在两个最广泛使用的E2E框架上的有效性,包括基于注意的编码器解码器(AED)和神经传感器(NTS)。实验表明,LF-MMI标准的引入始终如一地导致各种数据集和不同E2E ASR框架的显着性能改进。我们最好的模型在Aishell-1开发/测试集上实现了4.1 \%/ 4.4 \%的竞争力;我们还在强大的基线上实现了对Aishell-2和Librispeech数据集的显着误差。
translated by 谷歌翻译
最近,自我监督的预先磨普已经实现了端到端(E2E)自动语音识别(ASR)的令人印象深刻的结果。然而,主要的序列到序列(S2S)E2E模型仍然很难充分利用自我监督的预训练方法,因为其解码器在声学表示上被调节,因此不能分开预先磨损。在本文中,我们提出了一种基于混合CTC /注意E2E模型的预磨削变压器(Preformer)S2S ASR架构,以充分利用预磨削的声学模型(AMS)和语言模型(LMS)。在我们的框架中,编码器初始化了Preprina(Wav2Vec2.0)。 Preformer在训练和推理期间利用CTC作为辅助任务。此外,我们设计了一个十字解码器(OCD),其放宽对声学表示的依赖性,以便可以用预净化的LM(DistilGPT2)初始化它。实验在Aishell-1语料库上进行,并在测试集上达到4.6±6 \%$ Character error rate(cer)。与我们的Vanilla混合CTC /注意力变压器基线相比,我们所提出的CTC /注意力的预浆料产生27亿美元的相对CER减少。据我们所知,这是第一个在S2S ASR系统中使用普里雷米和LM的第一项工作。
translated by 谷歌翻译
常规的自动语音识别系统不会产生标点符号,这对于语音识别结果的可读性很重要。随后的自然语言处理任务(例如机器翻译)也需要它们。标点符号预测模型上有许多作品将标点符号插入语音识别结果中作为后处理。但是,这些研究并未利用声学信息进行标点符号预测,并且直接受语音识别错误的影响。在这项研究中,我们提出了一个端到端模型,该模型将语音作为输入并输出标点的文本。在使用声学信息时,该模型有望在语音识别错误方面可靠地预测标点符号。我们还建议使用辅助损失,以使用中间层和未插入文本的输出来训练模型。通过实验,我们将提出的模型的性能与级联系统的性能进行比较。所提出的模型比级联系统获得更高的标点符号预测准确性,而无需牺牲语音识别错误率。还证明,使用中间输出针对未插入文本的多任务学习有效。此外,与级联系统相比,提出的模型仅具有约1/7的参数。
translated by 谷歌翻译