机器学习在数据通信网络中信息流动的动态分析的各种模型中获得了增长的势头。这些初步模型通常依赖于货架上的学习模型来预测历史统计,同时忽视管理这些流动的产生行为的物理。本文介绍了流动神经网络(FlONNN),以改善具有学习物理偏差的特征表示。这由在嵌入层上工作的感应层来实现,以施加物理连接的数据相关,以及具有停止梯度的自我监督的学习策略,以使学习的物理通用。对于短时间性的网络预测任务,Flownn实现了17% - 71%的损失减少,而不是合成和现实世界网络数据集的最先进的基线,这表明了这种新方法的强度。代码将可用。
translated by 谷歌翻译
Network models are an essential block of modern networks. For example, they are widely used in network planning and optimization. However, as networks increase in scale and complexity, some models present limitations, such as the assumption of markovian traffic in queuing theory models, or the high computational cost of network simulators. Recent advances in machine learning, such as Graph Neural Networks (GNN), are enabling a new generation of network models that are data-driven and can learn complex non-linear behaviors. In this paper, we present RouteNet-Fermi, a custom GNN model that shares the same goals as queuing theory, while being considerably more accurate in the presence of realistic traffic models. The proposed model predicts accurately the delay, jitter, and loss in networks. We have tested RouteNet-Fermi in networks of increasing size (up to 300 nodes), including samples with mixed traffic profiles -- e.g., with complex non-markovian models -- and arbitrary routing and queue scheduling configurations. Our experimental results show that RouteNet-Fermi achieves similar accuracy as computationally-expensive packet-level simulators and it is able to accurately scale to large networks. For example, the model produces delay estimates with a mean relative error of 6.24% when applied to a test dataset with 1,000 samples, including network topologies one order of magnitude larger than those seen during training.
translated by 谷歌翻译
高性能的交通流量预测模型设计是一种智能运输系统的核心技术,是工业和学术社区的长期挑战,但仍然具有挑战性。物理原理和数据驱动模型之间缺乏整合是限制该领域发展的重要原因。在文献中,基于物理学的方法通常可以清楚地解释交通流系统的动态过程,但准确性有限,而数据驱动的方法,尤其是使用黑色盒子结构的深度学习,可以提高性能,但不能由于缺乏合理的身体依据,因此要完全信任。为了弥合纯粹数据驱动和物理驱动的方法之间的差距,我们提出了一个物理学引导的深度学习模型,名为时空微分方程网络(STDEN),该模型将交通流动器的物理机理投入到深度神经网络框架中。具体而言,我们假设道路网络上的交通流量是由潜在势能场驱动的(例如水流是由重力场驱动的),并将势能场的时空动态过程作为微分方程网络进行建模。 Stden吸收了数据驱动模型的性能优势和基于物理模型的可解释性,因此被命名为物理指导的预测模型。北京三个现实世界流量数据集的实验表明,我们的模型的表现优于最先进的基线。案例研究进一步验证了stden可以捕获城市交通机制,并具有物理含义的准确预测。提出的微分方程网络建模的框架也可能会阐明其他类似的应用程序。
translated by 谷歌翻译
Accurate short-term traffic prediction plays a pivotal role in various smart mobility operation and management systems. Currently, most of the state-of-the-art prediction models are based on graph neural networks (GNNs), and the required training samples are proportional to the size of the traffic network. In many cities, the available amount of traffic data is substantially below the minimum requirement due to the data collection expense. It is still an open question to develop traffic prediction models with a small size of training data on large-scale networks. We notice that the traffic states of a node for the near future only depend on the traffic states of its localized neighborhoods, which can be represented using the graph relational inductive biases. In view of this, this paper develops a graph network (GN)-based deep learning model LocaleGN that depicts the traffic dynamics using localized data aggregating and updating functions, as well as the node-wise recurrent neural networks. LocaleGN is a light-weighted model designed for training on few samples without over-fitting, and hence it can solve the problem of few-sample traffic prediction. The proposed model is examined on predicting both traffic speed and flow with six datasets, and the experimental results demonstrate that LocaleGN outperforms existing state-of-the-art baseline models. It is also demonstrated that the learned knowledge from LocaleGN can be transferred across cities. The research outcomes can help to develop light-weighted traffic prediction systems, especially for cities lacking historically archived traffic data.
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译
由于流量大数据的增加,交通预测逐渐引起了研究人员的注意力。因此,如何在交通数据中挖掘复杂的时空相关性以预测交通状况更准确地成为难题。以前的作品组合图形卷积网络(GCNS)和具有深度序列模型的自我关注机制(例如,复发性神经网络),分别捕获时空相关性,忽略时间和空间的关系。此外,GCNS受到过平滑问题的限制,自我关注受到二次问题的限制,导致GCN缺乏全局代表能力,自我注意力效率低下捕获全球空间依赖性。在本文中,我们提出了一种新颖的交通预测深入学习模型,命名为多语境意识的时空关节线性关注(STJLA),其对时空关节图应用线性关注以捕获所有时空之间的全球依赖性节点有效。更具体地,STJLA利用静态结构上下文和动态语义上下文来提高模型性能。基于Node2VEC和单热编码的静态结构上下文丰富了时空位置信息。此外,基于多头扩散卷积网络的动态空间上下文增强了局部空间感知能力,并且基于GRU的动态时间上下文分别稳定了线性关注的序列位置信息。在两个现实世界交通数据集,英格兰和PEMSD7上的实验表明,我们的Stjla可以获得高达9.83%和3.08%,在最先进的基线上的衡量标准的准确性提高。
translated by 谷歌翻译
交通流量预测是智能运输系统的重要组成部分,从而受到了研究人员的关注。但是,交通道路之间的复杂空间和时间依赖性使交通流量的预测具有挑战性。现有方法通常是基于图形神经网络,使用交通网络的预定义空间邻接图来建模空间依赖性,而忽略了道路节点之间关系的动态相关性。此外,他们通常使用独立的时空组件来捕获时空依赖性,并且不会有效地对全局时空依赖性进行建模。本文提出了一个新的时空因果图形注意网络(STCGAT),以解决上述挑战。在STCGAT中,我们使用一种节点嵌入方法,可以在每个时间步骤中自适应生成空间邻接子图,而无需先验地理知识和对不同时间步骤动态生成图的拓扑的精细颗粒建模。同时,我们提出了一个有效的因果时间相关成分,其中包含节点自适应学习,图形卷积以及局部和全局因果关系卷积模块,以共同学习局部和全局时空依赖性。在四个真正的大型流量数据集上进行的广泛实验表明,我们的模型始终优于所有基线模型。
translated by 谷歌翻译
Simulating physical network paths (e.g., Internet) is a cornerstone research problem in the emerging sub-field of AI-for-networking. We seek a model that generates end-to-end packet delay values in response to the time-varying load offered by a sender, which is typically a function of the previously output delays. The problem setting is unique, and renders the state-of-the-art text and time-series generative models inapplicable or ineffective. We formulate an ML problem at the intersection of dynamical systems, sequential decision making, and time-series modeling. We propose a novel grey-box approach to network simulation that embeds the semantics of physical network path in a new RNN-style model called RBU, providing the interpretability of standard network simulator tools, the power of neural models, the efficiency of SGD-based techniques for learning, and yielding promising results on synthetic and real-world network traces.
translated by 谷歌翻译
多变量时间序列预测是一个具有挑战性的任务,因为数据涉及长期和短期模式的混合,具有变量之间的动态时空依赖性。现有图形神经网络(GNN)通常与预定义的空间图或学习的固定邻接图模拟多变量关系。它限制了GNN的应用,并且无法处理上述挑战。在本文中,我们提出了一种新颖的框架,即静态和动态图形学习 - 神经网络(SDGL)。该模型分别从数据获取静态和动态图形矩阵分别为模型长期和短期模式。开发静态Matric以通过节点嵌入捕获固定的长期关联模式,并利用图规律性来控制学习静态图的质量。为了捕获变量之间的动态依赖性,我们提出了基于改变节点特征和静态节点Embeddings生成时变矩阵的动态图。在该方法中,我们将学习的静态图信息作为感应偏置集成为诱导动态图和局部时空模式更好。广泛的实验是在两个交通数据集中进行,具有额外的结构信息和四个时间序列数据集,这表明我们的方法在几乎所有数据集上实现了最先进的性能。如果纸张被接受,我将在GitHub上打开源代码。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
通信网络是当代社会中的重要基础设施。仍存在许多挑战,在该活性研究区域中不断提出新的解决方案。近年来,为了模拟网络拓扑,基于图形的深度学习在通信网络中的一系列问题中实现了最先进的性能。在本调查中,我们使用基于不同的图形的深度学习模型来审查快速增长的研究机构,例如,使用不同的图形深度学习模型。图表卷积和曲线图注意网络,在不同类型的通信网络中的各种问题中,例如,无线网络,有线网络和软件定义的网络。我们还为每项研究提供了一个有组织的问题和解决方案列表,并确定了未来的研究方向。据我们所知,本文是第一个专注于在涉及有线和无线场景的通信网络中应用基于图形的深度学习方法的调查。要跟踪后续研究,创建了一个公共GitHub存储库,其中相关文件将不断更新。
translated by 谷歌翻译
图形神经网络(GNN)在许多领域中显示出优异的应用,其中数据基本上表示为图(例如,化学,生物学,推荐系统)。在该静脉中,通信网络包括许多以图形结构方式(例如,拓扑,配置,交通流量)自然表示的许多基本组件。该职位文章将GNNS作为用于建模,控制和管理通信网络的基本工具。 GNN表示新一代的数据驱动模型,可以准确地学习和再现真实网络后面的复杂行为。因此,这种模型可以应用于各种网络用例,例如规划,在线优化或故障排除。 GNN在传统的神经网络上的主要优点在于在培训期间应用于其他网络和配置时的前所未有的泛化能力,这是实现用于网络实际数据驱动解决方案的关键特征。本文包括关于GNN的简要教程及其对通信网络的可能应用。为了展示这项技术的潜力,我们展示了两种用例,分别应用于有线和无线网络的最先进的GNN模型。最后,我们深入研究了这一小说研究区的关键开放挑战和机会。
translated by 谷歌翻译
最近的研究侧重于制定流量预测作为一种时空图形建模问题。它们通常在每个时间步骤构造静态空间图,然后将每个节点连接在相邻时间步骤之间以构造时空图形。在这样的图形中,不同时间步骤的不同节点之间的相关性未明确地反映,这可以限制图形神经网络的学习能力。同时,这些模型在不同时间步骤中使用相同的邻接矩阵时,忽略节点之间的动态时空相关性。为了克服这些限制,我们提出了一种时空关节图卷积网络(StJGCN),用于交通预测在公路网络上的几个时间上限。具体地,我们在任何两个时间步长之间构造预定的和自适应时空关节图(STJG),这代表了全面和动态的时空相关性。我们进一步设计了STJG上的扩张因果时空关节图卷积层,以捕获与多个范围不同的视角的时空依赖关系。提出了一种多范围注意机制来聚合不同范围的信息。四个公共交通数据集的实验表明,STJGCN是计算的高效和优于11个最先进的基线方法。
translated by 谷歌翻译
准确性和可解释性是犯罪预测模型的两个基本属性。由于犯罪可能对人类生命,经济和安全的不利影响,我们需要一个可以尽可能准确地预测未来犯罪的模型,以便可以采取早期步骤来避免犯罪。另一方面,可解释的模型揭示了模型预测背后的原因,确保其透明度并允许我们相应地规划预防犯罪步骤。开发模型的关键挑战是捕获特定犯罪类别的非线性空间依赖和时间模式,同时保持模型的底层结构可解释。在本文中,我们开发AIST,一种用于犯罪预测的注意力的可解释的时空时间网络。基于过去的犯罪发生,外部特征(例如,流量流量和兴趣点(POI)信息)和犯罪趋势,AICT模拟了犯罪类别的动态时空相关性。广泛的实验在使用真实数据集的准确性和解释性方面表现出我们模型的优越性。
translated by 谷歌翻译
Robust prediction of citywide traffic flows at different time periods plays a crucial role in intelligent transportation systems. While previous work has made great efforts to model spatio-temporal correlations, existing methods still suffer from two key limitations: i) Most models collectively predict all regions' flows without accounting for spatial heterogeneity, i.e., different regions may have skewed traffic flow distributions. ii) These models fail to capture the temporal heterogeneity induced by time-varying traffic patterns, as they typically model temporal correlations with a shared parameterized space for all time periods. To tackle these challenges, we propose a novel Spatio-Temporal Self-Supervised Learning (ST-SSL) traffic prediction framework which enhances the traffic pattern representations to be reflective of both spatial and temporal heterogeneity, with auxiliary self-supervised learning paradigms. Specifically, our ST-SSL is built over an integrated module with temporal and spatial convolutions for encoding the information across space and time. To achieve the adaptive spatio-temporal self-supervised learning, our ST-SSL first performs the adaptive augmentation over the traffic flow graph data at both attribute- and structure-levels. On top of the augmented traffic graph, two SSL auxiliary tasks are constructed to supplement the main traffic prediction task with spatial and temporal heterogeneity-aware augmentation. Experiments on four benchmark datasets demonstrate that ST-SSL consistently outperforms various state-of-the-art baselines. Since spatio-temporal heterogeneity widely exists in practical datasets, the proposed framework may also cast light on other spatial-temporal applications. Model implementation is available at https://github.com/Echo-Ji/ST-SSL.
translated by 谷歌翻译
As ride-hailing services become increasingly popular, being able to accurately predict demand for such services can help operators efficiently allocate drivers to customers, and reduce idle time, improve congestion, and enhance the passenger experience. This paper proposes UberNet, a deep learning Convolutional Neural Network for short-term prediction of demand for ride-hailing services. UberNet empploys a multivariate framework that utilises a number of temporal and spatial features that have been found in the literature to explain demand for ride-hailing services. The proposed model includes two sub-networks that aim to encode the source series of various features and decode the predicting series, respectively. To assess the performance and effectiveness of UberNet, we use 9 months of Uber pickup data in 2014 and 28 spatial and temporal features from New York City. By comparing the performance of UberNet with several other approaches, we show that the prediction quality of the model is highly competitive. Further, Ubernet's prediction performance is better when using economic, social and built environment features. This suggests that Ubernet is more naturally suited to including complex motivators in making real-time passenger demand predictions for ride-hailing services.
translated by 谷歌翻译
交通预测对于新时代智能城市的交通建设至关重要。但是,流量数据的复杂空间和时间依赖性使流量预测极具挑战性。大多数现有的流量预测方法都依赖于预定义的邻接矩阵来对时空依赖性建模。但是,道路交通状态是高度实时的,因此邻接矩阵应随着时间的推移而动态变化。本文介绍了一个新的多空间融合图复发网络(MSTFGRN),以解决上述问题。该网络提出了一种数据驱动的加权邻接矩阵生成方法,以补偿预定义的邻接矩阵未反映的实时空间依赖性。它还通过在不同矩的平行时空关系上执行新的双向时空融合操作来有效地学习隐藏的时空依赖性。最后,通过将全局注意机制集成到时空融合模块中,同时捕获了全局时空依赖性。对四个大型现实世界流量数据集进行的广泛试验表明,与替代基线相比,我们的方法实现了最先进的性能。
translated by 谷歌翻译
最近的研究表明,在将图神经网络应用于多元时间序列预测中,其中时间序列的相互作用被描述为图形结构,并且变量表示为图节点。沿着这一行,现有方法通常假定确定图神经网络的聚合方式的图形结构(或邻接矩阵)是根据定义或自学来固定的。但是,变量的相互作用在现实情况下可以是动态的和进化的。此外,如果在不同的时间尺度上观察到时间序列的相互作用序列的相互作用大不相同。为了使图形神经网络具有灵活而实用的图结构,在本文中,我们研究了如何对时间序列的进化和多尺度相互作用进行建模。特别是,我们首先提供与扩张的卷积配合的层次图结构,以捕获时间序列之间的比例特定相关性。然后,以经常性的方式构建了一系列邻接矩阵,以表示每一层的不断发展的相关性。此外,提供了一个统一的神经网络来集成上述组件以获得最终预测。这样,我们可以同时捕获成对的相关性和时间依赖性。最后,对单步和多步骤预测任务的实验证明了我们方法比最新方法的优越性。
translated by 谷歌翻译
The stock market prediction has been a traditional yet complex problem researched within diverse research areas and application domains due to its non-linear, highly volatile and complex nature. Existing surveys on stock market prediction often focus on traditional machine learning methods instead of deep learning methods. Deep learning has dominated many domains, gained much success and popularity in recent years in stock market prediction. This motivates us to provide a structured and comprehensive overview of the research on stock market prediction focusing on deep learning techniques. We present four elaborated subtasks of stock market prediction and propose a novel taxonomy to summarize the state-of-the-art models based on deep neural networks from 2011 to 2022. In addition, we also provide detailed statistics on the datasets and evaluation metrics commonly used in the stock market. Finally, we highlight some open issues and point out several future directions by sharing some new perspectives on stock market prediction.
translated by 谷歌翻译