Robust prediction of citywide traffic flows at different time periods plays a crucial role in intelligent transportation systems. While previous work has made great efforts to model spatio-temporal correlations, existing methods still suffer from two key limitations: i) Most models collectively predict all regions' flows without accounting for spatial heterogeneity, i.e., different regions may have skewed traffic flow distributions. ii) These models fail to capture the temporal heterogeneity induced by time-varying traffic patterns, as they typically model temporal correlations with a shared parameterized space for all time periods. To tackle these challenges, we propose a novel Spatio-Temporal Self-Supervised Learning (ST-SSL) traffic prediction framework which enhances the traffic pattern representations to be reflective of both spatial and temporal heterogeneity, with auxiliary self-supervised learning paradigms. Specifically, our ST-SSL is built over an integrated module with temporal and spatial convolutions for encoding the information across space and time. To achieve the adaptive spatio-temporal self-supervised learning, our ST-SSL first performs the adaptive augmentation over the traffic flow graph data at both attribute- and structure-levels. On top of the augmented traffic graph, two SSL auxiliary tasks are constructed to supplement the main traffic prediction task with spatial and temporal heterogeneity-aware augmentation. Experiments on four benchmark datasets demonstrate that ST-SSL consistently outperforms various state-of-the-art baselines. Since spatio-temporal heterogeneity widely exists in practical datasets, the proposed framework may also cast light on other spatial-temporal applications. Model implementation is available at https://github.com/Echo-Ji/ST-SSL.
translated by 谷歌翻译
犯罪预测对于公共安全和资源优化至关重要,但由于两个方面而言,这是非常具有挑战性的:i)犯罪活动的刑事模式的动态,犯罪事件在空间和时间域之间不均匀分布; ii)延时依赖于不同类型的犯罪(例如,盗窃,抢劫,攻击,损害),其揭示了犯罪的细粒度语义。为了解决这些挑战,我们提出了空间时间顺序超图网络(ST-SHN),以集体编码复杂的犯罪空间模式以及潜在的类别明智犯罪语义关系。具体而言,在长期和全局上下文下处理空间 - 时间动态,我们设计了一个具有超图学习范例的集成的图形结构化消息传递架构。为了在动态环境中捕获类别方面的犯罪异构关系,我们介绍了多通道路由机制,以了解犯罪类型的时间不断发展的结构依赖性。我们对两个现实世界数据集进行了广泛的实验,表明我们所提出的ST-SHN框架可以显着提高与各种最先进的基线相比的预测性能。源代码可用于:https://github.com/akaxlh/st-hn。
translated by 谷歌翻译
最近,深度学习方法在交通预测方面取得了长足的进步,但它们的性能取决于大量的历史数据。实际上,我们可能会面临数据稀缺问题。在这种情况下,深度学习模型无法获得令人满意的性能。转移学习是解决数据稀缺问题的一种有前途的方法。但是,流量预测中现有的转移学习方法主要基于常规网格数据,这不适用于流量网络中固有的图形数据。此外,现有的基于图的模型只能在道路网络中捕获共享的流量模式,以及如何学习节点特定模式也是一个挑战。在本文中,我们提出了一种新颖的传输学习方法来解决流量预测,几乎可以将知识从数据富的源域转移到数据范围的目标域。首先,提出了一个空间图形神经网络,该网络可以捕获不同道路网络的节点特异性时空交通模式。然后,为了提高转移的鲁棒性,我们设计了一种基于模式的转移策略,我们利用基于聚类的机制来提炼源域中的常见时空模式,并使用这些知识进一步提高了预测性能目标域。现实世界数据集的实验验证了我们方法的有效性。
translated by 谷歌翻译
由于运输网络中复杂的时空依赖性,准确的交通预测是智能运输系统中一项艰巨的任务。许多现有的作品利用复杂的时间建模方法与图形卷积网络(GCN)合并,以捕获短期和长期时空依赖性。但是,这些具有复杂设计的分离模块可以限制时空表示学习的有效性和效率。此外,大多数以前的作品都采用固定的图形构造方法来表征全局时空关系,这限制了模型在不同时间段甚至不同的数据方案中的学习能力。为了克服这些局限性,我们提出了一个自动扩张的时空同步图网络,称为Auto-DSTSGN用于流量预测。具体而言,我们设计了自动扩张的时空同步图(自动-DSTSG)模块,以捕获短期和长期时空相关性,通过在增加顺序的扩张因子中堆叠更深的层。此外,我们提出了一种图形结构搜索方法,以自动构建可以适应不同数据方案的时空同步图。在四个现实世界数据集上进行的广泛实验表明,与最先进的方法相比,我们的模型可以取得约10%的改善。源代码可在https://github.com/jinguangyin/auto-dstsgn上找到。
translated by 谷歌翻译
Long-term traffic prediction is highly challenging due to the complexity of traffic systems and the constantly changing nature of many impacting factors. In this paper, we focus on the spatio-temporal factors, and propose a graph multi-attention network (GMAN) to predict traffic conditions for time steps ahead at different locations on a road network graph. GMAN adapts an encoder-decoder architecture, where both the encoder and the decoder consist of multiple spatio-temporal attention blocks to model the impact of the spatio-temporal factors on traffic conditions. The encoder encodes the input traffic features and the decoder predicts the output sequence. Between the encoder and the decoder, a transform attention layer is applied to convert the encoded traffic features to generate the sequence representations of future time steps as the input of the decoder. The transform attention mechanism models the direct relationships between historical and future time steps that helps to alleviate the error propagation problem among prediction time steps. Experimental results on two real-world traffic prediction tasks (i.e., traffic volume prediction and traffic speed prediction) demonstrate the superiority of GMAN. In particular, in the 1 hour ahead prediction, GMAN outperforms state-of-the-art methods by up to 4% improvement in MAE measure. The source code is available at https://github.com/zhengchuanpan/GMAN.
translated by 谷歌翻译
由于动态和复杂的时空依赖性,交通预测具有挑战性。但是,现有方法仍然受到两个关键局限性。首先,许多方法通常使用静态预定义或自适应的空间图来捕获流量系统中动态的时空依赖性,这限制了灵活性,并且仅捕获了整个时间的共享模式,从而导致了次优性能。此外,大多数方法在每个时间步骤中都单独和独立地考虑地面真理与预测之间的绝对误差,这无法维持整体时间序列的全球属性和统计数据,并导致地面真相和预测之间的趋势差异。为此,在本文中,我们提出了一个动态自适应和对抗图卷积网络(DAAGCN),该网络将图形卷积网络(GCN)与生成的对抗网络(GANS)结合在一起,以进行流量预测。具体而言,DAAGCN利用带栅极模块的通用范式将时间变化的嵌入与节点嵌入集成在一起,以生成动态自适应图,以在每个时间步骤中推断空间 - 周期依赖性。然后,设计了两个歧视因子,以维持预测时间序列的全局属性的一致性,并在序列和图形级别上具有地面真相。在四个基准数据集上进行的广泛实验表明,DAAGCN的表现平均比最新的5.05%,3.80%和5.27%在MAE,RMSE和MAPE方面,同时加快收敛性高达9倍。代码可从https://github.com/juyongjiang/daagcn获得。
translated by 谷歌翻译
交通预测对于新时代智能城市的交通建设至关重要。但是,流量数据的复杂空间和时间依赖性使流量预测极具挑战性。大多数现有的流量预测方法都依赖于预定义的邻接矩阵来对时空依赖性建模。但是,道路交通状态是高度实时的,因此邻接矩阵应随着时间的推移而动态变化。本文介绍了一个新的多空间融合图复发网络(MSTFGRN),以解决上述问题。该网络提出了一种数据驱动的加权邻接矩阵生成方法,以补偿预定义的邻接矩阵未反映的实时空间依赖性。它还通过在不同矩的平行时空关系上执行新的双向时空融合操作来有效地学习隐藏的时空依赖性。最后,通过将全局注意机制集成到时空融合模块中,同时捕获了全局时空依赖性。对四个大型现实世界流量数据集进行的广泛试验表明,与替代基线相比,我们的方法实现了最先进的性能。
translated by 谷歌翻译
最近的研究侧重于制定流量预测作为一种时空图形建模问题。它们通常在每个时间步骤构造静态空间图,然后将每个节点连接在相邻时间步骤之间以构造时空图形。在这样的图形中,不同时间步骤的不同节点之间的相关性未明确地反映,这可以限制图形神经网络的学习能力。同时,这些模型在不同时间步骤中使用相同的邻接矩阵时,忽略节点之间的动态时空相关性。为了克服这些限制,我们提出了一种时空关节图卷积网络(StJGCN),用于交通预测在公路网络上的几个时间上限。具体地,我们在任何两个时间步长之间构造预定的和自适应时空关节图(STJG),这代表了全面和动态的时空相关性。我们进一步设计了STJG上的扩张因果时空关节图卷积层,以捕获与多个范围不同的视角的时空依赖关系。提出了一种多范围注意机制来聚合不同范围的信息。四个公共交通数据集的实验表明,STJGCN是计算的高效和优于11个最先进的基线方法。
translated by 谷歌翻译
准确的交通预测对于智能城市实现交通控制,路线计划和流动检测至关重要。尽管目前提出了许多时空方法,但这些方法在同步捕获流量数据的时空依赖性方面缺陷。此外,大多数方法忽略了随着流量数据的变化而产生的道路网络节点之间的动态变化相关性。我们建议基于神经网络的时空交互式动态图卷积网络(STIDGCN),以应对上述流量预测的挑战。具体而言,我们提出了一个交互式动态图卷积结构,该结构将序列划分为间隔,并通过交互式学习策略同步捕获流量数据的时空依赖性。交互式学习策略使StidGCN有效地预测。我们还提出了一个新颖的动态图卷积模块,以捕获由图生成器和融合图卷积组成的流量网络中动态变化的相关性。动态图卷积模块可以使用输入流量数据和预定义的图形结构来生成图形结构。然后将其与定义的自适应邻接矩阵融合,以生成动态邻接矩阵,该矩阵填充了预定义的图形结构,并模拟了道路网络中节点之间的动态关联的产生。在四个现实世界流量流数据集上进行的广泛实验表明,StidGCN的表现优于最先进的基线。
translated by 谷歌翻译
使用图形卷积网络(GCN)构建时空网络已成为预测交通信号的最流行方法之一。但是,当使用GCN进行交通速度预测时,常规方法通常将传感器之间的关系作为均匀图,并使用传感器累积的数据来学习邻接矩阵。但是,传感器之间的空间相关性并未指定为一个,而是从各种观点方面定义不同。为此,我们旨在研究流量信号数据中固有的异质特征,以以各种方式学习传感器之间的隐藏关系。具体而言,我们设计了一种方法来通过将传感器之间的空间关系分为静态和动态模块来构造每个模块的异质图。我们提出了一个基于网络分散注意力的基于异质性 - 感知图形卷积网络(HAGCN)方法,该方法通过在异质图中考虑每个通道的重要性来汇总相邻节点的隐藏状态。实际流量数据集的实验结果验证了所提出的方法的有效性,比现有模型取得了6.35%的改善,并实现了最先进的预测性能。
translated by 谷歌翻译
交通流量预测是智能运输系统的重要组成部分,从而受到了研究人员的关注。但是,交通道路之间的复杂空间和时间依赖性使交通流量的预测具有挑战性。现有方法通常是基于图形神经网络,使用交通网络的预定义空间邻接图来建模空间依赖性,而忽略了道路节点之间关系的动态相关性。此外,他们通常使用独立的时空组件来捕获时空依赖性,并且不会有效地对全局时空依赖性进行建模。本文提出了一个新的时空因果图形注意网络(STCGAT),以解决上述挑战。在STCGAT中,我们使用一种节点嵌入方法,可以在每个时间步骤中自适应生成空间邻接子图,而无需先验地理知识和对不同时间步骤动态生成图的拓扑的精细颗粒建模。同时,我们提出了一个有效的因果时间相关成分,其中包含节点自适应学习,图形卷积以及局部和全局因果关系卷积模块,以共同学习局部和全局时空依赖性。在四个真正的大型流量数据集上进行的广泛实验表明,我们的模型始终优于所有基线模型。
translated by 谷歌翻译
动态需求预测对于城市交通系统有效运行和管理至关重要。在单模需求预测上进行了广泛的研究,忽略了不同运输模式的需求可以彼此相关。尽管最近的一些努力,现有的多式化需求预测方法通常不够灵活,以便在不同模式下具有不同的空间单元和异质时空相关性的多路复用网络。为了解决这些问题,本研究提出了一种多重峰需求预测的多关系时空图神经网络(ST-MRGNN)。具体地,跨模式的空间依赖性被多个内部和模态关系图编码。引入多关系图神经网络(MRGNN)以捕获跨模式异构空间依赖性,包括广义图卷积网络,以了解关系图中的消息传递机制和基于关注的聚合模块,以总结不同的关系。我们进一步将MRGNN与时间门控卷积层相结合,共同模拟异质时滞的相关性。广泛的实验是使用真实的地铁和来自纽约市的乘车数据集进行的实验,结果验证了我们提出的方法对模式的现有方法的提高性能。需求稀疏位置的改进特别大。进一步分析ST-MRGNN的注意机制还表明了对理解跨模式相互作用的良好解释性。
translated by 谷歌翻译
Spatio-temporal modeling as a canonical task of multivariate time series forecasting has been a significant research topic in AI community. To address the underlying heterogeneity and non-stationarity implied in the graph streams, in this study, we propose Spatio-Temporal Meta-Graph Learning as a novel Graph Structure Learning mechanism on spatio-temporal data. Specifically, we implement this idea into Meta-Graph Convolutional Recurrent Network (MegaCRN) by plugging the Meta-Graph Learner powered by a Meta-Node Bank into GCRN encoder-decoder. We conduct a comprehensive evaluation on two benchmark datasets (METR-LA and PEMS-BAY) and a large-scale spatio-temporal dataset that contains a variaty of non-stationary phenomena. Our model outperformed the state-of-the-arts to a large degree on all three datasets (over 27% MAE and 34% RMSE). Besides, through a series of qualitative evaluations, we demonstrate that our model can explicitly disentangle locations and time slots with different patterns and be robustly adaptive to different anomalous situations. Codes and datasets are available at https://github.com/deepkashiwa20/MegaCRN.
translated by 谷歌翻译
高性能的交通流量预测模型设计是一种智能运输系统的核心技术,是工业和学术社区的长期挑战,但仍然具有挑战性。物理原理和数据驱动模型之间缺乏整合是限制该领域发展的重要原因。在文献中,基于物理学的方法通常可以清楚地解释交通流系统的动态过程,但准确性有限,而数据驱动的方法,尤其是使用黑色盒子结构的深度学习,可以提高性能,但不能由于缺乏合理的身体依据,因此要完全信任。为了弥合纯粹数据驱动和物理驱动的方法之间的差距,我们提出了一个物理学引导的深度学习模型,名为时空微分方程网络(STDEN),该模型将交通流动器的物理机理投入到深度神经网络框架中。具体而言,我们假设道路网络上的交通流量是由潜在势能场驱动的(例如水流是由重力场驱动的),并将势能场的时空动态过程作为微分方程网络进行建模。 Stden吸收了数据驱动模型的性能优势和基于物理模型的可解释性,因此被命名为物理指导的预测模型。北京三个现实世界流量数据集的实验表明,我们的模型的表现优于最先进的基线。案例研究进一步验证了stden可以捕获城市交通机制,并具有物理含义的准确预测。提出的微分方程网络建模的框架也可能会阐明其他类似的应用程序。
translated by 谷歌翻译
本文旨在统一非欧几里得空间中的空间依赖性和时间依赖性,同时捕获流量数据的内部空间依赖性。对于具有拓扑结构的时空属性实体,时空是连续的和统一的,而每个节点的当前状态都受到每个邻居的变异时期的邻居的过去状态的影响。大多数用于流量预测研究的空间依赖性和时间相关性的空间神经网络在处理中分别损害了时空完整性,而忽略了邻居节点的时间依赖期可以延迟和动态的事实。为了建模这种实际条件,我们提出了一种新型的空间 - 周期性图神经网络,将空间和时间视为不可分割的整体,以挖掘时空图,同时通过消息传播机制利用每个节点的发展时空依赖性。进行消融和参数研究的实验已经验证了拟议的遍及术的有效性,并且可以从https://github.com/nnzhan/traversenet中找到详细的实现。
translated by 谷歌翻译
Traffic forecasting as a canonical task of multivariate time series forecasting has been a significant research topic in AI community. To address the spatio-temporal heterogeneity and non-stationarity implied in the traffic stream, in this study, we propose Spatio-Temporal Meta-Graph Learning as a novel Graph Structure Learning mechanism on spatio-temporal data. Specifically, we implement this idea into Meta-Graph Convolutional Recurrent Network (MegaCRN) by plugging the Meta-Graph Learner powered by a Meta-Node Bank into GCRN encoder-decoder. We conduct a comprehensive evaluation on two benchmark datasets (METR-LA and PEMS-BAY) and a new large-scale traffic speed dataset in which traffic incident information is contained. Our model outperformed the state-of-the-arts to a large degree on all three datasets (over 27% MAE and 34% RMSE). Besides, through a series of qualitative evaluations, we demonstrate that our model can explicitly disentangle the road links and time slots with different patterns and be robustly adaptive to any anomalous traffic situations. Codes and datasets are available at https://github.com/deepkashiwa20/MegaCRN.
translated by 谷歌翻译
准确性和可解释性是犯罪预测模型的两个基本属性。由于犯罪可能对人类生命,经济和安全的不利影响,我们需要一个可以尽可能准确地预测未来犯罪的模型,以便可以采取早期步骤来避免犯罪。另一方面,可解释的模型揭示了模型预测背后的原因,确保其透明度并允许我们相应地规划预防犯罪步骤。开发模型的关键挑战是捕获特定犯罪类别的非线性空间依赖和时间模式,同时保持模型的底层结构可解释。在本文中,我们开发AIST,一种用于犯罪预测的注意力的可解释的时空时间网络。基于过去的犯罪发生,外部特征(例如,流量流量和兴趣点(POI)信息)和犯罪趋势,AICT模拟了犯罪类别的动态时空相关性。广泛的实验在使用真实数据集的准确性和解释性方面表现出我们模型的优越性。
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译
图表上的交通流量预测在许多字段(例如运输系统和计算机网络)中具有现实世界应用。由于复杂的时空相关性和非线性交通模式,交通预测可能是高度挑战的。现有的作品主要是通过分别考虑空间相关性和时间相关性来模拟此类时空依赖性的模型,并且无法对直接的时空相关性进行建模。受到图形域中变形金刚最近成功的启发,在本文中,我们建议使用局部多头自我攻击直接建模时空图上的跨空间相关性。为了降低时间的复杂性,我们将注意力接收场设置为空间相邻的节点,还引入了自适应图以捕获隐藏的空间范围依赖性。基于这些注意机制,我们提出了一种新型的自适应图形时空变压器网络(ASTTN),该网络堆叠了多个时空注意层以在输入图上应用自我注意力,然后是线性层进行预测。公共交通网络数据集,Metr-La PEMS-Bay,PEMSD4和PEMSD7的实验结果证明了我们模型的出色性能。
translated by 谷歌翻译
旨在预测人群进入或离开某些地区的人群的预测是智能城市的一项基本任务。人群流数据的关键属性之一是周期性:一种按常规时间间隔发生的模式,例如每周模式。为了捕获这种周期性,现有研究要么将周期性的隐藏状态融合到网络中,以学习或将额外的定期策略应用于网络体系结构。在本文中,我们设计了一个新颖的定期残差学习网络(PRNET),以更好地建模人群流数据中的周期性。与现有方法不同,PRNET通过建模输入(上一个时期)和输出(未来时间段)之间的变化来将人群流动预测作为周期性的残差学习问题。与直接预测高度动态的人群流动相比,学习更多的固定偏差要容易得多,从而有助于模型训练。此外,学到的变化使网络能够在每个时间间隔内产生未来条件及其相应每周观察的残差,因此有助于更准确的多步骤预测。广泛的实验表明,PRNET可以轻松地集成到现有模型中,以增强其预测性能。
translated by 谷歌翻译