Level 5 Autonomous Driving, a technology that a fully automated vehicle (AV) requires no human intervention, has raised serious concerns on safety and stability before widespread use. The capability of understanding and predicting future motion trajectory of road objects can help AV plan a path that is safe and easy to control. In this paper, we propose a network architecture that parallelizes multiple convolutional neural network backbones and fuses features to make multi-mode trajectory prediction. In the 2020 ICRA Nuscene Prediction challenge, our model ranks 15th on the leaderboard across all teams.
translated by 谷歌翻译
从社交机器人到自动驾驶汽车,多种代理的运动预测(MP)是任意复杂环境中的至关重要任务。当前方法使用端到端网络解决了此问题,其中输入数据通常是场景的最高视图和所有代理的过去轨迹;利用此信息是获得最佳性能的必不可少的。从这个意义上讲,可靠的自动驾驶(AD)系统必须按时产生合理的预测,但是,尽管其中许多方法使用了简单的Convnets和LSTM,但在使用两个信息源时,模型对于实时应用程序可能不够有效(地图和轨迹历史)。此外,这些模型的性能在很大程度上取决于训练数据的数量,这可能很昂贵(尤其是带注释的HD地图)。在这项工作中,我们探讨了如何使用有效的基于注意力的模型在Argoverse 1.0基准上实现竞争性能,该模型将其作为最小地图信息的过去轨迹和基于地图的功能的输入,以确保有效且可靠的MP。这些功能代表可解释的信息作为可驱动区域和合理的目标点,与基于黑框CNN的地图处理方法相反。
translated by 谷歌翻译
预测公路参与者的未来运动对于自动驾驶至关重要,但由于令人震惊的运动不确定性,因此极具挑战性。最近,大多数运动预测方法求助于基于目标的策略,即预测运动轨迹的终点,作为回归整个轨迹的条件,以便可以减少解决方案的搜索空间。但是,准确的目标坐标很难预测和评估。此外,目的地的点表示限制了丰富的道路环境的利用,从而导致预测不准确。目标区域,即可能的目的地区域,而不是目标坐标,可以通过涉及更多的容忍度和指导来提供更软的限制,以搜索潜在的轨迹。考虑到这一点,我们提出了一个新的基于目标区域的框架,名为“目标区域网络”(GANET)进行运动预测,该框架对目标区域进行了建模,而不是确切的目标坐标作为轨迹预测的先决条件,更加可靠,更准确地执行。具体而言,我们建议一个goicrop(目标的目标区域)操作员有效地提取目标区域中的语义巷特征,并在目标区域和模型演员的未来互动中提取语义巷,这对未来的轨迹估计很大。 Ganet在所有公共文献(直到论文提交)中排名第一个,将其源代码排在第一位。
translated by 谷歌翻译
轨迹预测和行为决策是自动驾驶汽车的两项重要任务,他们需要对环境环境有良好的了解;通过参考轨迹预测的输出,可以更好地做出行为决策。但是,大多数当前解决方案分别执行这两个任务。因此,提出了结合多个线索的联合神经网络,并将其命名为整体变压器,以预测轨迹并同时做出行为决策。为了更好地探索线索之间的内在关系,网络使用现有知识并采用三种注意力机制:稀疏的多头类型用于减少噪声影响,特征选择稀疏类型,可最佳地使用部分先验知识,并与Sigmoid多头激活类型,用于最佳使用后验知识。与其他轨迹预测模型相比,所提出的模型具有更好的综合性能和良好的解释性。感知噪声稳健性实验表明,所提出的模型具有良好的噪声稳健性。因此,结合多个提示的同时轨迹预测和行为决策可以降低计算成本并增强场景与代理之间的语义关系。
translated by 谷歌翻译
预测周围动态剂的未来轨迹是自动驾驶中的必要要求。这些轨迹主要取决于周围的静态环境以及这些动态剂的过去运动。此外,代理意图的多模式性质使轨迹预测问题更具挑战性。所有现有模型都同样考虑目标剂以及周围的剂,而无需考虑物理特性的变化。在本文中,我们为自动驾驶中的多模式轨迹预测提供了一个新颖的基于深度学习的框架,该框架考虑了目标及周围车辆的物理特性,例如对象类及其物理尺寸通过加权注意模块,从而改善预测的准确性。我们的模型在Nuscenes轨迹预测基准测试中取得了最高的结果,这些模型是使用栅格图来输入环境信息的模型。此外,我们的模型能够实时运行,达到300 fps的高推理率。
translated by 谷歌翻译
预测场景中代理的未来位置是自动驾驶中的一个重要问题。近年来,在代表现场及其代理商方面取得了重大进展。代理与场景和彼此之间的相互作用通常由图神经网络建模。但是,图形结构主要是静态的,无法表示高度动态场景中的时间变化。在这项工作中,我们提出了一个时间图表示,以更好地捕获流量场景中的动态。我们用两种类型的内存模块补充表示形式。一个专注于感兴趣的代理,另一个专注于整个场景。这使我们能够学习暂时意识的表示,即使对多个未来进行简单回归,也可以取得良好的结果。当与目标条件预测结合使用时,我们会显示出更好的结果,可以在Argoverse基准中达到最先进的性能。
translated by 谷歌翻译
Motion prediction systems aim to capture the future behavior of traffic scenarios enabling autonomous vehicles to perform safe and efficient planning. The evolution of these scenarios is highly uncertain and depends on the interactions of agents with static and dynamic objects in the scene. GNN-based approaches have recently gained attention as they are well suited to naturally model these interactions. However, one of the main challenges that remains unexplored is how to address the complexity and opacity of these models in order to deal with the transparency requirements for autonomous driving systems, which includes aspects such as interpretability and explainability. In this work, we aim to improve the explainability of motion prediction systems by using different approaches. First, we propose a new Explainable Heterogeneous Graph-based Policy (XHGP) model based on an heterograph representation of the traffic scene and lane-graph traversals, which learns interaction behaviors using object-level and type-level attention. This learned attention provides information about the most important agents and interactions in the scene. Second, we explore this same idea with the explanations provided by GNNExplainer. Third, we apply counterfactual reasoning to provide explanations of selected individual scenarios by exploring the sensitivity of the trained model to changes made to the input data, i.e., masking some elements of the scene, modifying trajectories, and adding or removing dynamic agents. The explainability analysis provided in this paper is a first step towards more transparent and reliable motion prediction systems, important from the perspective of the user, developers and regulatory agencies. The code to reproduce this work is publicly available at https://github.com/sancarlim/Explainable-MP/tree/v1.1.
translated by 谷歌翻译
相应地预测周围交通参与者的未来状态,并计划安全,平稳且符合社会的轨迹对于自动驾驶汽车至关重要。当前的自主驾驶系统有两个主要问题:预测模块通常与计划模块解耦,并且计划的成本功能很难指定和调整。为了解决这些问题,我们提出了一个端到端的可区分框架,该框架集成了预测和计划模块,并能够从数据中学习成本函数。具体而言,我们采用可区分的非线性优化器作为运动计划者,该运动计划将神经网络给出的周围剂的预测轨迹作为输入,并优化了自动驾驶汽车的轨迹,从而使框架中的所有操作都可以在框架中具有可观的成本,包括成本功能权重。提出的框架经过大规模的现实驾驶数据集进行了训练,以模仿整个驾驶场景中的人类驾驶轨迹,并在开环和闭环界面中进行了验证。开环测试结果表明,所提出的方法的表现优于各种指标的基线方法,并提供以计划为中心的预测结果,从而使计划模块能够输出接近人类的轨迹。在闭环测试中,提出的方法表明能够处理复杂的城市驾驶场景和鲁棒性,以抵抗模仿学习方法所遭受的分配转移。重要的是,我们发现计划和预测模块的联合培训比在开环和闭环测试中使用单独的训练有素的预测模块进行计划要比计划更好。此外,消融研究表明,框架中的可学习组件对于确保计划稳定性和性能至关重要。
translated by 谷歌翻译
Making safe and human-like decisions is an essential capability of autonomous driving systems and learning-based behavior planning is a promising pathway toward this objective. Distinguished from existing learning-based methods that directly output decisions, this work introduces a predictive behavior planning framework that learns to predict and evaluate from human driving data. Concretely, a behavior generation module first produces a diverse set of candidate behaviors in the form of trajectory proposals. Then the proposed conditional motion prediction network is employed to forecast other agents' future trajectories conditioned on each trajectory proposal. Given the candidate plans and associated prediction results, we learn a scoring module to evaluate the plans using maximum entropy inverse reinforcement learning (IRL). We conduct comprehensive experiments to validate the proposed framework on a large-scale real-world urban driving dataset. The results reveal that the conditional prediction model is able to forecast multiple possible future trajectories given a candidate behavior and the prediction results are reactive to different plans. Moreover, the IRL-based scoring module can properly evaluate the trajectory proposals and select close-to-human ones. The proposed framework outperforms other baseline methods in terms of similarity to human driving trajectories. Moreover, we find that the conditional prediction model can improve both prediction and planning performance compared to the non-conditional model, and learning the scoring module is critical to correctly evaluating the candidate plans to align with human drivers.
translated by 谷歌翻译
关于车辆路径预测的推理是自动驾驶系统安全运行的必不可少的问题。有许多用于路径预测的研究工作。但是,其中大多数不使用车道信息,也不基于变压器体系结构。通过利用从配备自动驾驶车辆的传感器收集的不同类型的数据,我们提出了一个名为多模式变压器路径预测(MTPP)的路径预测系统,该系统旨在预测目标试剂的长期未来轨迹。为了实现更准确的路径预测,在我们的模型中采用了变压器体系结构。为了更好地利用车道信息,目标试剂不太可能采用与目标试剂相反的车道,因此被过滤掉。另外,将连续的车道块组合在一起,以确保车道输入足够长以进行路径预测。进行了广泛的评估,以显示使用Nuscene(现实世界中的轨迹预测数据集)的拟议系统的功效。
translated by 谷歌翻译
自主驾驶的运动预测领域的先前艺术倾向于寻找接近地面真理轨迹的轨迹。但是,这种问题的表述和方法经常导致多样性和偏见轨迹预测的丧失。因此,它们不适合现实世界的自主驾驶,在这种驾驶中,多样化和依赖道路的多模式轨迹预测对安全至关重要。为此,本研究提出了一种新颖的损失函数\ textit {lane损失},可确保地图自适应多样性并适应几何约束。对带有新型轨迹候选建议模块的两阶段轨迹预测架构,\ textit {轨迹预测注意(TPA)}经过训练,通过车道损失训练,鼓励多个轨迹分布多样,以涵盖可行的方式以图像意识的方式涵盖可行的操作。此外,考虑到现有的轨迹性能指标正在重点是基于地面真理未来轨迹评估准确性,因此还建议定量评估指标来评估预测的多个轨迹的多样性。在Argoverse数据集上进行的实验表明,所提出的方法显着提高了预测轨迹的多样性,而无需牺牲预测准确性。
translated by 谷歌翻译
自我监督学习(SSL)是一种新兴技术,已成功地用于培训卷积神经网络(CNNS)和图形神经网络(GNNS),以进行更可转移,可转换,可推广和稳健的代表性学习。然而,很少探索其对自动驾驶的运动预测。在这项研究中,我们报告了将自学纳入运动预测的首次系统探索和评估。我们首先建议研究四项新型的自我监督学习任务,以通过理论原理以及对挑战性的大规模argoverse数据集进行运动预测以及定量和定性比较。其次,我们指出,基于辅助SSL的学习设置不仅胜过预测方法,这些方法在性能准确性方面使用变压器,复杂的融合机制和复杂的在线密集目标候选优化算法,而且具有较低的推理时间和建筑复杂性。最后,我们进行了几项实验,以了解为什么SSL改善运动预测。代码在\ url {https://github.com/autovision-cloud/ssl-lanes}上开源。
translated by 谷歌翻译
We propose a motion forecasting model that exploits a novel structured map representation as well as actor-map interactions. Instead of encoding vectorized maps as raster images, we construct a lane graph from raw map data to explicitly preserve the map structure. To capture the complex topology and long range dependencies of the lane graph, we propose LaneGCN which extends graph convolutions with multiple adjacency matrices and along-lane dilation. To capture the complex interactions between actors and maps, we exploit a fusion network consisting of four types of interactions, actor-to-lane, lane-to-lane, laneto-actor and actor-to-actor. Powered by LaneGCN and actor-map interactions, our model is able to predict accurate and realistic multi-modal trajectories. Our approach significantly outperforms the state-of-the-art on the large scale Argoverse motion forecasting benchmark.
translated by 谷歌翻译
预测道路用户的未来行为是自主驾驶中最具挑战性和最重要的问题之一。应用深度学习对此问题需要以丰富的感知信号和地图信息的形式融合异构世界状态,并在可能的期货上推断出高度多模态分布。在本文中,我们呈现MultiPath ++,这是一个未来的预测模型,实现了在流行的基准上实现最先进的性能。 MultiPath ++通过重新访问许多设计选择来改善多径架构。第一关键设计差异是偏离基于图像的基于输入世界状态的偏离,有利于异构场景元素的稀疏编码:多径++消耗紧凑且有效的折线,直接描述道路特征和原始代理状态信息(例如,位置,速度,加速)。我们提出了一种背景感知这些元素的融合,并开发可重用的多上下文选通融合组件。其次,我们重新考虑了预定义,静态锚点的选择,并开发了一种学习模型端到端的潜在锚嵌入的方法。最后,我们在其他ML域中探索合奏和输出聚合技术 - 常见的常见域 - 并为我们的概率多模式输出表示找到有效的变体。我们对这些设计选择进行了广泛的消融,并表明我们所提出的模型在协会运动预测竞争和Waymo开放数据集运动预测挑战上实现了最先进的性能。
translated by 谷歌翻译
Accurately predicting interactive road agents' future trajectories and planning a socially compliant and human-like trajectory accordingly are important for autonomous vehicles. In this paper, we propose a planning-centric prediction neural network, which takes surrounding agents' historical states and map context information as input, and outputs the joint multi-modal prediction trajectories for surrounding agents, as well as a sequence of control commands for the ego vehicle by imitation learning. An agent-agent interaction module along the time axis is proposed in our network architecture to better comprehend the relationship among all the other intelligent agents on the road. To incorporate the map's topological information, a Dynamic Graph Convolutional Neural Network (DGCNN) is employed to process the road network topology. Besides, the whole architecture can serve as a backbone for the Differentiable Integrated motion Prediction with Planning (DIPP) method by providing accurate prediction results and initial planning commands. Experiments are conducted on real-world datasets to demonstrate the improvements made by our proposed method in both planning and prediction accuracy compared to the previous state-of-the-art methods.
translated by 谷歌翻译
预测交通参与者的多模式未来行为对于机器人车辆做出安全决策至关重要。现有作品探索以直接根据潜在特征预测未来的轨迹,或利用密集的目标候选者来识别代理商的目的地,在这种情况下,由于所有运动模式均来自相同的功能,而后者的策略具有效率问题,因此前者策略的收敛缓慢,因为其性能高度依赖关于候选目标的密度。在本文中,我们提出了运动变压器(MTR)框架,该框架将运动预测模拟为全球意图定位和局部运动改进的联合优化。 MTR不使用目标候选者,而是通过采用一系列可学习的运动查询对来结合空间意图。每个运动查询对负责特定运动模式的轨迹预测和完善,这可以稳定训练过程并促进更好的多模式预测。实验表明,MTR在边际和联合运动预测挑战上都达到了最新的性能,在Waymo Open Motion DataSet排行榜上排名第一。代码将在https://github.com/sshaoshuai/mtr上找到。
translated by 谷歌翻译
预测附近代理商的合理的未来轨迹是自治车辆安全的核心挑战,主要取决于两个外部线索:动态邻居代理和静态场景上下文。最近的方法在分别表征两个线索方面取得了很大进展。然而,它们忽略了两个线索之间的相关性,并且大多数很难实现地图自适应预测。在本文中,我们使用Lane作为场景数据,并提出一个分阶段网络,即共同学习代理和车道信息,用于多模式轨迹预测(JAL-MTP)。 JAL-MTP使用社交到LANE(S2L)模块来共同代表静态道和相邻代理的动态运动作为实例级车道,一种用于利用实例级车道来预测的反复出的车道注意力(RLA)机制来预测Map-Adaptive Future Trajections和两个选择器,可识别典型和合理的轨迹。在公共协议数据集上进行的实验表明JAL-MTP在定量和定性中显着优于现有模型。
translated by 谷歌翻译
Predicting the future motion of road agents is a critical task in an autonomous driving pipeline. In this work, we address the problem of generating a set of scene-level, or joint, future trajectory predictions in multi-agent driving scenarios. To this end, we propose FJMP, a Factorized Joint Motion Prediction framework for multi-agent interactive driving scenarios. FJMP models the future scene interaction dynamics as a sparse directed interaction graph, where edges denote explicit interactions between agents. We then prune the graph into a directed acyclic graph (DAG) and decompose the joint prediction task into a sequence of marginal and conditional predictions according to the partial ordering of the DAG, where joint future trajectories are decoded using a directed acyclic graph neural network (DAGNN). We conduct experiments on the INTERACTION and Argoverse 2 datasets and demonstrate that FJMP produces more accurate and scene-consistent joint trajectory predictions than non-factorized approaches, especially on the most interactive and kinematically interesting agents. FJMP ranks 1st on the multi-agent test leaderboard of the INTERACTION dataset.
translated by 谷歌翻译
在交通场景中的道路使用者的运动预测对于必须在复杂的动态环境中采取安全和强大决策的自动驾驶系统至关重要。我们提出了一种新型的运动预测系统,用于自动驾驶。我们的系统基于贝叶斯逆计划框架,该框架有效地精心策划了基于地图的目标提取,基于经典的基于控制的轨迹发生器以及专家集合轻巧神经网络的混合物,专门针对运动概况预测。与许多替代方法相反,这种模块化有助于隔离性能因素并更好地解释结果,而不会损害性能。该系统解决了感兴趣的多个方面,即多模式,运动概况不确定性和轨迹物理可行性。我们报告了流行的高速公路数据集NGSIM的几个实验,这在轨迹误差方面证明了最先进的性能。我们还对系统组件进行了详细的分析,以及基于行为(例如变更车道与跟随车道)对数据进行分层的实验,以提供对该域中挑战的见解。最后,我们提出了定性分析,以显示我们方法的其他好处,例如解释产出的能力。
translated by 谷歌翻译
行为预测在集成自主驾驶软件解决方案中起着重要作用。在行为预测研究中,与单一代理行为预测相比,交互行为预测是一个较小的领域。预测互动剂的运动需要启动新的机制来捕获交互式对的关节行为。在这项工作中,我们将端到端的关节预测问题作为边际学习和车辆行为联合学习的顺序学习过程。我们提出了ProspectNet,这是一个采用加权注意分数的联合学习块,以模拟交互式剂对之间的相互影响。联合学习块首先权衡多模式预测的候选轨迹,然后通过交叉注意更新自我代理的嵌入。此外,我们将每个交互式代理的个人未来预测播放到一个智慧评分模块中,以选择顶部的$ K $预测对。我们表明,ProspectNet优于两个边际预测的笛卡尔产品,并在Waymo交互式运动预测基准上实现了可比的性能。
translated by 谷歌翻译