预测周围动态剂的未来轨迹是自动驾驶中的必要要求。这些轨迹主要取决于周围的静态环境以及这些动态剂的过去运动。此外,代理意图的多模式性质使轨迹预测问题更具挑战性。所有现有模型都同样考虑目标剂以及周围的剂,而无需考虑物理特性的变化。在本文中,我们为自动驾驶中的多模式轨迹预测提供了一个新颖的基于深度学习的框架,该框架考虑了目标及周围车辆的物理特性,例如对象类及其物理尺寸通过加权注意模块,从而改善预测的准确性。我们的模型在Nuscenes轨迹预测基准测试中取得了最高的结果,这些模型是使用栅格图来输入环境信息的模型。此外,我们的模型能够实时运行,达到300 fps的高推理率。
translated by 谷歌翻译
本文提出了一个新型的深度学习框架,用于多模式运动预测。该框架由三个部分组成:经常性神经网络,以处理目标代理的运动过程,卷积神经网络处理栅格化环境表示以及一种基于距离的注意机制,以处理不同代理之间的相互作用。我们在大规模的真实驾驶数据集,Waymo Open Motion数据集上验证了所提出的框架,并将其性能与标准测试基准上的其他方法进行比较。定性结果表明,我们的模型给出的预测轨迹是准确,多样的,并且根据道路结构。标准基准测试的定量结果表明,我们的模型在预测准确性和其他评估指标方面优于其他基线方法。拟议的框架是2021 Waymo Open DataSet运动预测挑战的第二名。
translated by 谷歌翻译
从社交机器人到自动驾驶汽车,多种代理的运动预测(MP)是任意复杂环境中的至关重要任务。当前方法使用端到端网络解决了此问题,其中输入数据通常是场景的最高视图和所有代理的过去轨迹;利用此信息是获得最佳性能的必不可少的。从这个意义上讲,可靠的自动驾驶(AD)系统必须按时产生合理的预测,但是,尽管其中许多方法使用了简单的Convnets和LSTM,但在使用两个信息源时,模型对于实时应用程序可能不够有效(地图和轨迹历史)。此外,这些模型的性能在很大程度上取决于训练数据的数量,这可能很昂贵(尤其是带注释的HD地图)。在这项工作中,我们探讨了如何使用有效的基于注意力的模型在Argoverse 1.0基准上实现竞争性能,该模型将其作为最小地图信息的过去轨迹和基于地图的功能的输入,以确保有效且可靠的MP。这些功能代表可解释的信息作为可驱动区域和合理的目标点,与基于黑框CNN的地图处理方法相反。
translated by 谷歌翻译
预测附近代理商的合理的未来轨迹是自治车辆安全的核心挑战,主要取决于两个外部线索:动态邻居代理和静态场景上下文。最近的方法在分别表征两个线索方面取得了很大进展。然而,它们忽略了两个线索之间的相关性,并且大多数很难实现地图自适应预测。在本文中,我们使用Lane作为场景数据,并提出一个分阶段网络,即共同学习代理和车道信息,用于多模式轨迹预测(JAL-MTP)。 JAL-MTP使用社交到LANE(S2L)模块来共同代表静态道和相邻代理的动态运动作为实例级车道,一种用于利用实例级车道来预测的反复出的车道注意力(RLA)机制来预测Map-Adaptive Future Trajections和两个选择器,可识别典型和合理的轨迹。在公共协议数据集上进行的实验表明JAL-MTP在定量和定性中显着优于现有模型。
translated by 谷歌翻译
Level 5 Autonomous Driving, a technology that a fully automated vehicle (AV) requires no human intervention, has raised serious concerns on safety and stability before widespread use. The capability of understanding and predicting future motion trajectory of road objects can help AV plan a path that is safe and easy to control. In this paper, we propose a network architecture that parallelizes multiple convolutional neural network backbones and fuses features to make multi-mode trajectory prediction. In the 2020 ICRA Nuscene Prediction challenge, our model ranks 15th on the leaderboard across all teams.
translated by 谷歌翻译
安全可靠的自主驾驶堆栈(AD)的设计是我们时代最具挑战性的任务之一。预计这些广告将在具有完全自主权的高度动态环境中驱动,并且比人类更大的可靠性。从这个意义上讲,要高效,安全地浏览任意复杂的流量情景,广告必须具有预测周围参与者的未来轨迹的能力。当前的最新模型通常基于复发,图形和卷积网络,在车辆预测的背景下取得了明显的结果。在本文中,我们探讨了在生成模型进行运动预测中注意力的影响,考虑到物理和社会环境以计算最合理的轨迹。我们首先使用LSTM网络对过去的轨迹进行编码,该网络是计算社会背景的多头自我发言模块的输入。另一方面,我们制定了一个加权插值来计算最后一个观测框中的速度和方向,以便计算可接受的目标点,从HDMAP信息的可驱动的HDMAP信息中提取,这代表了我们的物理环境。最后,我们的发电机的输入是从多元正态分布采样的白噪声矢量,而社会和物理环境则是其条件,以预测可行的轨迹。我们使用Argoverse运动预测基准1.1验证我们的方法,从而实现竞争性的单峰结果。
translated by 谷歌翻译
自主驾驶的运动预测领域的先前艺术倾向于寻找接近地面真理轨迹的轨迹。但是,这种问题的表述和方法经常导致多样性和偏见轨迹预测的丧失。因此,它们不适合现实世界的自主驾驶,在这种驾驶中,多样化和依赖道路的多模式轨迹预测对安全至关重要。为此,本研究提出了一种新颖的损失函数\ textit {lane损失},可确保地图自适应多样性并适应几何约束。对带有新型轨迹候选建议模块的两阶段轨迹预测架构,\ textit {轨迹预测注意(TPA)}经过训练,通过车道损失训练,鼓励多个轨迹分布多样,以涵盖可行的方式以图像意识的方式涵盖可行的操作。此外,考虑到现有的轨迹性能指标正在重点是基于地面真理未来轨迹评估准确性,因此还建议定量评估指标来评估预测的多个轨迹的多样性。在Argoverse数据集上进行的实验表明,所提出的方法显着提高了预测轨迹的多样性,而无需牺牲预测准确性。
translated by 谷歌翻译
Motion prediction systems aim to capture the future behavior of traffic scenarios enabling autonomous vehicles to perform safe and efficient planning. The evolution of these scenarios is highly uncertain and depends on the interactions of agents with static and dynamic objects in the scene. GNN-based approaches have recently gained attention as they are well suited to naturally model these interactions. However, one of the main challenges that remains unexplored is how to address the complexity and opacity of these models in order to deal with the transparency requirements for autonomous driving systems, which includes aspects such as interpretability and explainability. In this work, we aim to improve the explainability of motion prediction systems by using different approaches. First, we propose a new Explainable Heterogeneous Graph-based Policy (XHGP) model based on an heterograph representation of the traffic scene and lane-graph traversals, which learns interaction behaviors using object-level and type-level attention. This learned attention provides information about the most important agents and interactions in the scene. Second, we explore this same idea with the explanations provided by GNNExplainer. Third, we apply counterfactual reasoning to provide explanations of selected individual scenarios by exploring the sensitivity of the trained model to changes made to the input data, i.e., masking some elements of the scene, modifying trajectories, and adding or removing dynamic agents. The explainability analysis provided in this paper is a first step towards more transparent and reliable motion prediction systems, important from the perspective of the user, developers and regulatory agencies. The code to reproduce this work is publicly available at https://github.com/sancarlim/Explainable-MP/tree/v1.1.
translated by 谷歌翻译
轨迹预测和行为决策是自动驾驶汽车的两项重要任务,他们需要对环境环境有良好的了解;通过参考轨迹预测的输出,可以更好地做出行为决策。但是,大多数当前解决方案分别执行这两个任务。因此,提出了结合多个线索的联合神经网络,并将其命名为整体变压器,以预测轨迹并同时做出行为决策。为了更好地探索线索之间的内在关系,网络使用现有知识并采用三种注意力机制:稀疏的多头类型用于减少噪声影响,特征选择稀疏类型,可最佳地使用部分先验知识,并与Sigmoid多头激活类型,用于最佳使用后验知识。与其他轨迹预测模型相比,所提出的模型具有更好的综合性能和良好的解释性。感知噪声稳健性实验表明,所提出的模型具有良好的噪声稳健性。因此,结合多个提示的同时轨迹预测和行为决策可以降低计算成本并增强场景与代理之间的语义关系。
translated by 谷歌翻译
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation. As a result, multi-agent behavior prediction has become a core component of modern human-robot interactive systems, such as self-driving cars. While there exist many methods for trajectory forecasting, most do not enforce dynamic constraints and do not account for environmental information (e.g., maps). Towards this end, we present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents while incorporating agent dynamics and heterogeneous data (e.g., semantic maps). Trajectron++ is designed to be tightly integrated with robotic planning and control frameworks; for example, it can produce predictions that are optionally conditioned on ego-agent motion plans. We demonstrate its performance on several challenging real-world trajectory forecasting datasets, outperforming a wide array of state-ofthe-art deterministic and generative methods.
translated by 谷歌翻译
Modern autonomous driving system is characterized as modular tasks in sequential order, i.e., perception, prediction and planning. As sensors and hardware get improved, there is trending popularity to devise a system that can perform a wide diversity of tasks to fulfill higher-level intelligence. Contemporary approaches resort to either deploying standalone models for individual tasks, or designing a multi-task paradigm with separate heads. These might suffer from accumulative error or negative transfer effect. Instead, we argue that a favorable algorithm framework should be devised and optimized in pursuit of the ultimate goal, i.e. planning of the self-driving-car. Oriented at this goal, we revisit the key components within perception and prediction. We analyze each module and prioritize the tasks hierarchically, such that all these tasks contribute to planning (the goal). To this end, we introduce Unified Autonomous Driving (UniAD), the first comprehensive framework up-to-date that incorporates full-stack driving tasks in one network. It is exquisitely devised to leverage advantages of each module, and provide complementary feature abstractions for agent interaction from a global perspective. Tasks are communicated with unified query design to facilitate each other toward planning. We instantiate UniAD on the challenging nuScenes benchmark. With extensive ablations, the effectiveness of using such a philosophy is proven to surpass previous state-of-the-arts by a large margin in all aspects. The full suite of codebase and models would be available to facilitate future research in the community.
translated by 谷歌翻译
预测公路参与者的未来运动对于自动驾驶至关重要,但由于令人震惊的运动不确定性,因此极具挑战性。最近,大多数运动预测方法求助于基于目标的策略,即预测运动轨迹的终点,作为回归整个轨迹的条件,以便可以减少解决方案的搜索空间。但是,准确的目标坐标很难预测和评估。此外,目的地的点表示限制了丰富的道路环境的利用,从而导致预测不准确。目标区域,即可能的目的地区域,而不是目标坐标,可以通过涉及更多的容忍度和指导来提供更软的限制,以搜索潜在的轨迹。考虑到这一点,我们提出了一个新的基于目标区域的框架,名为“目标区域网络”(GANET)进行运动预测,该框架对目标区域进行了建模,而不是确切的目标坐标作为轨迹预测的先决条件,更加可靠,更准确地执行。具体而言,我们建议一个goicrop(目标的目标区域)操作员有效地提取目标区域中的语义巷特征,并在目标区域和模型演员的未来互动中提取语义巷,这对未来的轨迹估计很大。 Ganet在所有公共文献(直到论文提交)中排名第一个,将其源代码排在第一位。
translated by 谷歌翻译
Predicting the future motion of dynamic agents is of paramount importance to ensure safety or assess risks in motion planning for autonomous robots. In this paper, we propose a two-stage motion prediction method, referred to as R-Pred, that effectively utilizes both the scene and interaction context using a cascade of the initial trajectory proposal network and the trajectory refinement network. The initial trajectory proposal network produces M trajectory proposals corresponding to M modes of a future trajectory distribution. The trajectory refinement network enhances each of M proposals using 1) the tube-query scene attention (TQSA) and 2) the proposal-level interaction attention (PIA). TQSA uses tube-queries to aggregate the local scene context features pooled from proximity around the trajectory proposals of interest. PIA further enhances the trajectory proposals by modeling inter-agent interactions using a group of trajectory proposals selected based on their distances from neighboring agents. Our experiments conducted on the Argoverse and nuScenes datasets demonstrate that the proposed refinement network provides significant performance improvements compared to the single-stage baseline and that R-Pred achieves state-of-the-art performance in some categories of the benchmark.
translated by 谷歌翻译
预测场景中代理的未来位置是自动驾驶中的一个重要问题。近年来,在代表现场及其代理商方面取得了重大进展。代理与场景和彼此之间的相互作用通常由图神经网络建模。但是,图形结构主要是静态的,无法表示高度动态场景中的时间变化。在这项工作中,我们提出了一个时间图表示,以更好地捕获流量场景中的动态。我们用两种类型的内存模块补充表示形式。一个专注于感兴趣的代理,另一个专注于整个场景。这使我们能够学习暂时意识的表示,即使对多个未来进行简单回归,也可以取得良好的结果。当与目标条件预测结合使用时,我们会显示出更好的结果,可以在Argoverse基准中达到最先进的性能。
translated by 谷歌翻译
预测交通参与者的多模式未来行为对于机器人车辆做出安全决策至关重要。现有作品探索以直接根据潜在特征预测未来的轨迹,或利用密集的目标候选者来识别代理商的目的地,在这种情况下,由于所有运动模式均来自相同的功能,而后者的策略具有效率问题,因此前者策略的收敛缓慢,因为其性能高度依赖关于候选目标的密度。在本文中,我们提出了运动变压器(MTR)框架,该框架将运动预测模拟为全球意图定位和局部运动改进的联合优化。 MTR不使用目标候选者,而是通过采用一系列可学习的运动查询对来结合空间意图。每个运动查询对负责特定运动模式的轨迹预测和完善,这可以稳定训练过程并促进更好的多模式预测。实验表明,MTR在边际和联合运动预测挑战上都达到了最新的性能,在Waymo Open Motion DataSet排行榜上排名第一。代码将在https://github.com/sshaoshuai/mtr上找到。
translated by 谷歌翻译
预测道路用户的未来行为是自主驾驶中最具挑战性和最重要的问题之一。应用深度学习对此问题需要以丰富的感知信号和地图信息的形式融合异构世界状态,并在可能的期货上推断出高度多模态分布。在本文中,我们呈现MultiPath ++,这是一个未来的预测模型,实现了在流行的基准上实现最先进的性能。 MultiPath ++通过重新访问许多设计选择来改善多径架构。第一关键设计差异是偏离基于图像的基于输入世界状态的偏离,有利于异构场景元素的稀疏编码:多径++消耗紧凑且有效的折线,直接描述道路特征和原始代理状态信息(例如,位置,速度,加速)。我们提出了一种背景感知这些元素的融合,并开发可重用的多上下文选通融合组件。其次,我们重新考虑了预定义,静态锚点的选择,并开发了一种学习模型端到端的潜在锚嵌入的方法。最后,我们在其他ML域中探索合奏和输出聚合技术 - 常见的常见域 - 并为我们的概率多模式输出表示找到有效的变体。我们对这些设计选择进行了广泛的消融,并表明我们所提出的模型在协会运动预测竞争和Waymo开放数据集运动预测挑战上实现了最先进的性能。
translated by 谷歌翻译
在本报告中,我们介绍了2022 Waymo Open DataSet挑战中运动预测轨迹的第一名解决方案。我们为多模式运动预测提出了一个新型的运动变压器框架,该框架引入了一组新型运动查询对,用于通过共同执行意图定位和迭代运动改进来产生更好的多模式未来轨迹。采用了一种简单的模型合奏策略,并采用了非最大抑制作用,以进一步提高最终性能。我们的方法在2022 Waymo打开数据集挑战的运动预测排行榜上取得了第一名,优于其他利润率的其他方法。代码将在https://github.com/sshaoshuai/mtr上找到。
translated by 谷歌翻译
关于车辆路径预测的推理是自动驾驶系统安全运行的必不可少的问题。有许多用于路径预测的研究工作。但是,其中大多数不使用车道信息,也不基于变压器体系结构。通过利用从配备自动驾驶车辆的传感器收集的不同类型的数据,我们提出了一个名为多模式变压器路径预测(MTPP)的路径预测系统,该系统旨在预测目标试剂的长期未来轨迹。为了实现更准确的路径预测,在我们的模型中采用了变压器体系结构。为了更好地利用车道信息,目标试剂不太可能采用与目标试剂相反的车道,因此被过滤掉。另外,将连续的车道块组合在一起,以确保车道输入足够长以进行路径预测。进行了广泛的评估,以显示使用Nuscene(现实世界中的轨迹预测数据集)的拟议系统的功效。
translated by 谷歌翻译
变量自动编码器(VAE)已广泛用于建模数据分布,因为它在理论上优雅,易于训练并且具有不错的多种形式表示。但是,当应用于图像重建和合成任务时,VAE显示了生成样品往往模糊的局限性。我们观察到一个类似的问题,其中生成的轨迹位于相邻的车道之间,通常是在基于VAE的轨迹预测模型中出现的。为了减轻此问题,我们将层次潜在结构引入基于VAE的预测模型。基于以下假设,即可以将轨迹分布近似为简单分布(或模式)的混合物,因此使用低级潜在变量来对混合物的每种模式进行建模,并采用了高级潜在变量来表示权重代表权重对于模式。为了准确地对每个模式进行建模,我们使用以新颖方式计算的两个车道级别上下文向量来调节低级潜在变量,一种对应于车道相互作用,另一个对应于车辆车辆的相互作用。上下文向量还用于通过建议的模式选择网络对权重进行建模。为了评估我们的预测模型,我们使用两个大型现实世界数据集。实验结果表明,我们的模型不仅能够生成清晰的多模式轨迹分布,而且还可以优于最新模型(SOTA)模型。我们的代码可在https://github.com/d1024choi/hlstrajforecast上找到。
translated by 谷歌翻译
相应地预测周围交通参与者的未来状态,并计划安全,平稳且符合社会的轨迹对于自动驾驶汽车至关重要。当前的自主驾驶系统有两个主要问题:预测模块通常与计划模块解耦,并且计划的成本功能很难指定和调整。为了解决这些问题,我们提出了一个端到端的可区分框架,该框架集成了预测和计划模块,并能够从数据中学习成本函数。具体而言,我们采用可区分的非线性优化器作为运动计划者,该运动计划将神经网络给出的周围剂的预测轨迹作为输入,并优化了自动驾驶汽车的轨迹,从而使框架中的所有操作都可以在框架中具有可观的成本,包括成本功能权重。提出的框架经过大规模的现实驾驶数据集进行了训练,以模仿整个驾驶场景中的人类驾驶轨迹,并在开环和闭环界面中进行了验证。开环测试结果表明,所提出的方法的表现优于各种指标的基线方法,并提供以计划为中心的预测结果,从而使计划模块能够输出接近人类的轨迹。在闭环测试中,提出的方法表明能够处理复杂的城市驾驶场景和鲁棒性,以抵抗模仿学习方法所遭受的分配转移。重要的是,我们发现计划和预测模块的联合培训比在开环和闭环测试中使用单独的训练有素的预测模块进行计划要比计划更好。此外,消融研究表明,框架中的可学习组件对于确保计划稳定性和性能至关重要。
translated by 谷歌翻译