我们使用条件扩散模型介绍调色板,这是一种简单而一般的框架,可用于图像到图像到图像转换。在四个具有挑战性的图像到图像转换任务(着色,染色,un折叠和JPEG减压),调色板优于强大的GaN和回归基线,并建立了新的最新状态。这是在没有特定于任务特定的超参数调整,架构定制或任何辅助损耗的情况下实现的,展示了理想的一般性和灵活性。我们揭示了使用$ l_2 $与vs. $ l_1 $损失在样本多样性上的越来越多的影响,并通过经验架构研究表明自我关注的重要性。重要的是,我们倡导基于想象项目的统一评估协议,并报告包括预先训练的Reset-50的FID,成立得分,分类准确度的多个样本质量评分,以及针对各种基线的参考图像的感知距离。我们预计这一标准化评估协议在推进图像到图像翻译研究方面发挥着关键作用。最后,我们表明,在3个任务(着色,染色,JPEG减压)上培训的单个通用调色板模型也表现或优于特定于任务专家的专家对应物。
translated by 谷歌翻译
通过将图像形成过程分解成逐个申请的去噪自身额,扩散模型(DMS)实现了最先进的合成导致图像数据和超越。另外,它们的配方允许引导机构来控制图像生成过程而不会再刷新。然而,由于这些模型通常在像素空间中直接操作,因此强大的DMS的优化通常消耗数百个GPU天,并且由于顺序评估,推理是昂贵的。为了在保留其质量和灵活性的同时启用有限计算资源的DM培训,我们将它们应用于强大的佩带自动化器的潜在空间。与以前的工作相比,这种代表上的培训扩散模型允许第一次达到复杂性降低和细节保存之间的近乎最佳点,极大地提高了视觉保真度。通过将跨关注层引入模型架构中,我们将扩散模型转化为强大而柔性的发电机,以进行诸如文本或边界盒和高分辨率合成的通用调节输入,以卷积方式变得可以实现。我们的潜在扩散模型(LDMS)实现了一种新的技术状态,可在各种任务中进行图像修复和高竞争性能,包括无条件图像生成,语义场景合成和超级分辨率,同时与基于像素的DMS相比显着降低计算要求。代码可在https://github.com/compvis/lattent-diffusion获得。
translated by 谷歌翻译
自由格式介绍是在任意二进制掩码指定的区域中向图像中添加新内容的任务。大多数现有方法训练了一定的面具分布,这将其概括能力限制为看不见的掩模类型。此外,通过像素和知觉损失的训练通常会导致对缺失区域的简单质地扩展,而不是语义上有意义的一代。在这项工作中,我们提出重新启动:基于deno的扩散概率模型(DDPM)的内部介入方法,甚至适用于极端掩模。我们采用预定的无条件DDPM作为生成先验。为了调节生成过程,我们仅通过使用给定的图像信息对未掩盖的区域进行采样来改变反向扩散迭代。由于该技术不会修改或调节原始DDPM网络本身,因此该模型可为任何填充形式产生高质量和不同的输出图像。我们使用标准面具和极端口罩验证面部和通用图像的方法。重新粉刷优于最先进的自动回归,而GAN的方法至少在六个面具分布中进行了五个。 github存储库:git.io/repaint
translated by 谷歌翻译
DeNoising扩散模型代表了计算机视觉中最新的主题,在生成建模领域表现出了显着的结果。扩散模型是一个基于两个阶段的深层生成模型,一个正向扩散阶段和反向扩散阶段。在正向扩散阶段,通过添加高斯噪声,输入数据在几个步骤中逐渐受到干扰。在反向阶段,模型的任务是通过学习逐步逆转扩散过程来恢复原始输入数据。尽管已知的计算负担,即由于采样过程中涉及的步骤数量,扩散模型对生成样品的质量和多样性得到了广泛赞赏。在这项调查中,我们对视觉中应用的denoising扩散模型的文章进行了全面综述,包括该领域的理论和实际贡献。首先,我们识别并介绍了三个通用扩散建模框架,这些框架基于扩散概率模型,噪声调节得分网络和随机微分方程。我们进一步讨论了扩散模型与其他深层生成模型之间的关系,包括变异自动编码器,生成对抗网络,基于能量的模型,自回归模型和正常流量。然后,我们介绍了计算机视觉中应用的扩散模型的多角度分类。最后,我们说明了扩散模型的当前局限性,并设想了一些有趣的未来研究方向。
translated by 谷歌翻译
在不利天气条件下的图像恢复对各种计算机视觉应用引起了重大兴趣。最近的成功方法取决于深度神经网络架构设计(例如,具有视觉变压器)的当前进展。由最新的条件生成模型取得的最新进展的动机,我们提出了一种基于贴片的图像恢复算法,基于脱氧扩散概率模型。我们的基于贴片的扩散建模方法可以通过使用指导的DeNoising过程进行尺寸 - 不足的图像恢复,并在推理过程中对重叠贴片进行平滑的噪声估计。我们在基准数据集上经验评估了我们的模型,以进行图像,混合的降低和飞行以及去除雨滴的去除。我们展示了我们在特定天气和多天气图像恢复上实现最先进的表演的方法,并在质量上表现出对现实世界测试图像的强烈概括。
translated by 谷歌翻译
Conditional diffusion probabilistic models can model the distribution of natural images and can generate diverse and realistic samples based on given conditions. However, oftentimes their results can be unrealistic with observable color shifts and textures. We believe that this issue results from the divergence between the probabilistic distribution learned by the model and the distribution of natural images. The delicate conditions gradually enlarge the divergence during each sampling timestep. To address this issue, we introduce a new method that brings the predicted samples to the training data manifold using a pretrained unconditional diffusion model. The unconditional model acts as a regularizer and reduces the divergence introduced by the conditional model at each sampling step. We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks. The improvements obtained by our method suggest that the priors can be incorporated as a general plugin for improving conditional diffusion models.
translated by 谷歌翻译
Generative adversarial networks (GANs) have made great success in image inpainting yet still have difficulties tackling large missing regions. In contrast, iterative algorithms, such as autoregressive and denoising diffusion models, have to be deployed with massive computing resources for decent effect. To overcome the respective limitations, we present a novel spatial diffusion model (SDM) that uses a few iterations to gradually deliver informative pixels to the entire image, largely enhancing the inference efficiency. Also, thanks to the proposed decoupled probabilistic modeling and spatial diffusion scheme, our method achieves high-quality large-hole completion. On multiple benchmarks, we achieve new state-of-the-art performance. Code is released at https://github.com/fenglinglwb/SDM.
translated by 谷歌翻译
扩散模型(DMS)显示出高质量图像合成的巨大潜力。但是,当涉及到具有复杂场景的图像时,如何正确描述图像全局结构和对象细节仍然是一项具有挑战性的任务。在本文中,我们提出了弗里多(Frido),这是一种特征金字塔扩散模型,该模型执行了图像合成的多尺度粗到1个降解过程。我们的模型将输入图像分解为依赖比例的矢量量化特征,然后是用于产生图像输出的粗到细门。在上述多尺度表示阶段,可以进一步利用文本,场景图或图像布局等其他输入条件。因此,还可以将弗里多应用于条件或跨模式图像合成。我们对各种无条件和有条件的图像生成任务进行了广泛的实验,从文本到图像综合,布局到图像,场景环形图像到标签形象。更具体地说,我们在五个基准测试中获得了最先进的FID分数,即可可和开阔图像的布局到图像,可可和视觉基因组的场景环形图像以及可可的标签对图像图像。 。代码可在https://github.com/davidhalladay/frido上找到。
translated by 谷歌翻译
图像deBlurring是一种对给定输入图像的多种合理的解决方案是一个不适的问题。然而,大多数现有方法产生了清洁图像的确定性估计,并且训练以最小化像素级失真。已知这些指标与人类感知差,并且通常导致不切实际的重建。我们基于条件扩散模型介绍了盲脱模的替代框架。与现有技术不同,我们训练一个随机采样器,它改进了确定性预测器的输出,并且能够为给定输入产生多样化的合理重建。这导致跨多个标准基准的现有最先进方法的感知质量的显着提高。与典型的扩散模型相比,我们的预测和精致方法也能实现更有效的采样。结合仔细调整的网络架构和推理过程,我们的方法在PSNR等失真度量方面具有竞争力。这些结果表明了我们基于扩散和挑战的扩散和挑战的策略的显着优势,生产单一确定性重建的广泛使用策略。
translated by 谷歌翻译
最近已被证明扩散模型产生高质量的合成图像,尤其是与指导技术配对,以促进忠诚的多样性。我们探索文本条件图像综合问题的扩散模型,并比较了两种不同的指导策略:剪辑指导和自由分类指导。我们发现后者是人类评估者的优选,用于光敏和标题相似度,并且通常产生光素质拟种样品。使用自由分类指导的35亿参数文本条件扩散模型的样本由人类评估者对来自Dall-E的人的人们青睐,即使后者使用昂贵的剪辑重新划分。此外,我们发现我们的模型可以进行微调,以执行图像修复,从而实现强大的文本驱动的图像编辑。我们在过滤的数据集中培训较小的模型,并在https://github.com/openai/glide-text2im释放代码和权重。
translated by 谷歌翻译
我们提出了一种基于示例的图像翻译的新方法,称为匹配交织的扩散模型(MIDMS)。该任务的大多数现有方法都是基于GAN的匹配,然后代表了代代框架。但是,在此框架中,跨跨域的语义匹配难度引起的匹配误差,例如草图和照片,可以很容易地传播到生成步骤,从而导致结果退化。由于扩散模型的最新成功激发了克服GAN的缺点,我们结合了扩散模型以克服这些局限性。具体而言,我们制定了一个基于扩散的匹配和生成框架,该框架通过将中间扭曲馈入尖锐的过程并将其变形以生成翻译的图像,从而交织了潜在空间中的跨域匹配和扩散步骤。此外,为了提高扩散过程的可靠性,我们使用周期一致性设计了一种置信度的过程,以在翻译过程中仅考虑自信区域。实验结果表明,我们的MIDM比最新方法产生的图像更合理。
translated by 谷歌翻译
标准扩散模型涉及图像变换 - 添加高斯噪声 - 以及逆转此降解的图像恢复操作员。我们观察到,扩散模型的生成行为并不是很大程度上取决于图像降解的选择,实际上,可以通过改变这种选择来构建整个生成模型家族。即使使用完全确定性的降解(例如,模糊,掩蔽等),培训和测试时间更新规则是基于扩散模型的培训和测试时间更新规则,可以轻松地概括为创建生成模型。这些完全确定的模型的成功使社区对扩散模型的理解质疑,这依赖于梯度Langevin动力学或变异推理中的噪声,并为反转任意过程的广义扩散模型铺平了道路。我们的代码可从https://github.com/arpitbansal297/cold-diffusion-models获得
translated by 谷歌翻译
Diffusion Probabilistic Models (DPMs) have recently been employed for image deblurring. DPMs are trained via a stochastic denoising process that maps Gaussian noise to the high-quality image, conditioned on the concatenated blurry input. Despite their high-quality generated samples, image-conditioned Diffusion Probabilistic Models (icDPM) rely on synthetic pairwise training data (in-domain), with potentially unclear robustness towards real-world unseen images (out-of-domain). In this work, we investigate the generalization ability of icDPMs in deblurring, and propose a simple but effective guidance to significantly alleviate artifacts, and improve the out-of-distribution performance. Particularly, we propose to first extract a multiscale domain-generalizable representation from the input image that removes domain-specific information while preserving the underlying image structure. The representation is then added into the feature maps of the conditional diffusion model as an extra guidance that helps improving the generalization. To benchmark, we focus on out-of-distribution performance by applying a single-dataset trained model to three external and diverse test sets. The effectiveness of the proposed formulation is demonstrated by improvements over the standard icDPM, as well as state-of-the-art performance on perceptual quality and competitive distortion metrics compared to existing methods.
translated by 谷歌翻译
扩散概率模型采用前向马尔可夫扩散链逐渐将数据映射到噪声分布,学习如何通过推断一个反向马尔可夫扩散链来生成数据以颠倒正向扩散过程。为了实现竞争性数据生成性能,他们需要一条长长的扩散链,这使它们在培训中不仅在培训中而且发电。为了显着提高计算效率,我们建议通过废除将数据扩散到随机噪声的要求来截断正向扩散链。因此,我们从隐式生成分布而不是随机噪声启动逆扩散链,并通过将其与截断的正向扩散链损坏的数据的分布相匹配来学习其参数。实验结果表明,就发电性能和所需的逆扩散步骤的数量而言,我们的截短扩散概率模型对未截断的概率模型提供了一致的改进。
translated by 谷歌翻译
我们表明,级联扩散模型能够在类条件的想象生成基准上生成高保真图像,而无需辅助图像分类器的任何帮助来提高样品质量。级联的扩散模型包括多个扩散模型的流水线,其产生越来越多的分辨率,以最低分辨率的标准扩散模型开始,然后是一个或多个超分辨率扩散模型,其连续上追随图像并添加更高的分辨率细节。我们发现级联管道的样本质量至关重要的是调节增强,我们提出的数据增强较低分辨率调节输入到超级分辨率模型的方法。我们的实验表明,调节增强防止在级联模型中采样过程中的复合误差,帮助我们在256×256分辨率下,在128x128和4.88,优于63.02的分类精度分数,培训级联管道。 %(TOP-1)和84.06%(TOP-5)在256x256,优于VQ-VAE-2。
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
Denoising diffusion probabilistic models (DDPM) are a class of generative models which have recently been shown to produce excellent samples. We show that with a few simple modifications, DDPMs can also achieve competitive loglikelihoods while maintaining high sample quality. Additionally, we find that learning variances of the reverse diffusion process allows sampling with an order of magnitude fewer forward passes with a negligible difference in sample quality, which is important for the practical deployment of these models. We additionally use precision and recall to compare how well DDPMs and GANs cover the target distribution. Finally, we show that the sample quality and likelihood of these models scale smoothly with model capacity and training compute, making them easily scalable. We release our code at https://github.com/ openai/improved-diffusion.
translated by 谷歌翻译
与生成的对抗网(GAN)相比,降级扩散概率模型(DDPM)在各种图像生成任务中取得了显着成功。关于语义图像综合的最新工作主要遵循\ emph {de exto}基于gan的方法,这可能导致生成图像的质量或多样性不令人满意。在本文中,我们提出了一个基于DDPM的新型框架,用于语义图像合成。与先前的条件扩散模型不同,将语义布局和嘈杂的图像作为输入为U-NET结构,该结构可能无法完全利用输入语义掩码中的信息,我们的框架处理语义布局和嘈杂的图像不同。它将噪声图像馈送到U-NET结构的编码器时,而语义布局通过多层空间自适应归一化操作符将语义布局馈送到解码器。为了进一步提高语义图像合成中的发电质量和语义解释性,我们介绍了无分类器的指导采样策略,该策略承认采样过程的无条件模型的得分。在三个基准数据集上进行的广泛实验证明了我们提出的方法的有效性,从而在忠诚度(FID)和多样性〜(LPIPS)方面实现了最先进的性能。
translated by 谷歌翻译
利用深度学习的最新进展,文本到图像生成模型目前具有吸引公众关注的优点。其中两个模型Dall-E 2和Imagen已经证明,可以从图像的简单文本描述中生成高度逼真的图像。基于一种称为扩散模型的新型图像生成方法,文本对图像模型可以生产许多不同类型的高分辨率图像,其中人类想象力是唯一的极限。但是,这些模型需要大量的计算资源来训练,并处理从互联网收集的大量数据集。此外,代码库和模型均未发布。因此,它可以防止AI社区尝试这些尖端模型,从而使其结果复制变得复杂,即使不是不可能。在本文中,我们的目标是首先回顾这些模型使用的不同方法和技术,然后提出我们自己的文本模型模型实施。高度基于DALL-E 2,我们引入了一些轻微的修改,以应对所引起的高计算成本。因此,我们有机会进行实验,以了解这些模型的能力,尤其是在低资源制度中。特别是,我们提供了比Dall-e 2的作者(包括消融研究)更深入的分析。此外,扩散模型使用所谓的指导方法来帮助生成过程。我们引入了一种新的指导方法,该方法可以与其他指导方法一起使用,以提高图像质量。最后,我们的模型产生的图像质量相当好,而不必维持最先进的文本对图像模型的重大培训成本。
translated by 谷歌翻译
We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops -- through increased transformer depth/width or increased number of input tokens -- consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512x512 and 256x256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.
translated by 谷歌翻译