在这封信中,我们解决了多输入多输出(MIMO)链接的阻塞检测和预编码器设计,而无需通信开销。通过基于物理学的图神经网络(GNN)对光检测和范围(LIDAR)数据进行分类来实现阻塞检测。对于预编码器设计,通过在从LiDAR数据获得的3D表面上运行射线跟踪来获得初步的通道估计。该估计值是连续完善的,并且对预编码器进行了相应的设计。数值模拟表明,封锁检测成功率为95%。我们的数字编码实现了90%的容量和模拟预码,优于先前的工作,从而利用LiDAR进行预编码器设计。
translated by 谷歌翻译
车辆到基础设施(V2I)通信中的高效毫米波(MMWAVE)光束选择是由于MMWVEAVE和高用户移动性窄的狭窄但挑战性的任务。为了减少迭代光束发现过程的搜索开销,通过数据驱动的方法利用了从安装在车辆上的光检测和测距(LIDAR)传感器的上下文信息,以产生有用的侧面信息。在本文中,我们提出了一种轻量级神经网络(NN)架构以及相应的LIDAR预处理,这显着优于先前的作品。我们的解决方案包括多个新奇,可提高模型的收敛速度和最终精度。特别是,我们定义了由知识蒸馏理念的启发的新型损失函数,介绍课程训练方法利用视线(LOS)/非视线(NLOS)信息,我们提出非本地注意模块提高了对NLOS案例更具挑战性的性能。基准数据集的仿真结果表明,利用LIDAR数据和接收器位置,我们的NN基光束选择方案可以实现79.9%的遗弃光束扫描方法,无需任何光束搜索开销,通过搜索少至6个梁。在典型的MMWAVE V2I场景中,我们所提出的方法可以显着减少实现所需吞吐量所需的光束搜索时间,与逆指纹和分层光束选择方案相比。
translated by 谷歌翻译
在车辆场景中的毫米波链路的光束选择是一个具有挑战性的问题,因为所有候选光束对之间的详尽搜索都不能在短接触时间内被确认完成。我们通过利用像LIDAR,相机图像和GPS等传感器收集的多模级数据来解决这一问题。我们提出了可以在本地以及移动边缘计算中心(MEC)本地执行的个人方式和分布式融合的深度学习(F-DL)架构,并研究相关权衡。我们还制定和解决优化问题,以考虑实际的光束搜索,MEC处理和传感器到MEC数据传送延迟开销,用于确定上述F-DL架构的输出尺寸。在公开的合成和本土现实世界数据集上进行的广泛评估结果分别在古典RF光束上释放出95%和96%的束选择速度提高。在预测前10个最佳光束对中,F-DL还优于最先进的技术20-22%。
translated by 谷歌翻译
低成本毫米波(MMWAVE)通信和雷达设备的商业可用性开始提高消费市场中这种技术的渗透,为第五代(5G)的大规模和致密的部署铺平了道路(5G) - 而且以及6G网络。同时,普遍存在MMWAVE访问将使设备定位和无设备的感测,以前所未有的精度,特别是对于Sub-6 GHz商业级设备。本文使用MMWAVE通信和雷达设备在基于设备的定位和无设备感应中进行了现有技术的调查,重点是室内部署。我们首先概述关于MMWAVE信号传播和系统设计的关键概念。然后,我们提供了MMWaves启用的本地化和感应方法和算法的详细说明。我们考虑了在我们的分析中的几个方面,包括每个工作的主要目标,技术和性能,每个研究是否达到了一定程度的实现,并且该硬件平台用于此目的。我们通过讨论消费者级设备的更好算法,密集部署的数据融合方法以及机器学习方法的受过教育应用是有前途,相关和及时的研究方向的结论。
translated by 谷歌翻译
可重新配置的智能表面(RIS)可以显着增强TERA-HERTZ大量多输入多输出(MIMO)通信系统的服务覆盖范围。但是,获得有限的飞行员和反馈信号开销的准确高维通道状态信息(CSI)具有挑战性,从而严重降低了常规空间分裂多次访问的性能。为了提高针对CSI缺陷的鲁棒性,本文提出了针对RIS辅助TERA-HERTZ多用户MIMO系统的基于深度学习的(DL)基于速率的多访问(RSMA)方案。具体而言,我们首先提出了基于DL的混合数据模型驱动的RSMA预编码方案,包括RIS的被动预编码以及模拟主动编码和基本站(BS)的RSMA数字活动预码。为了实现RIS的被动预码,我们提出了一个基于变压器的数据驱动的RIS反射网络(RRN)。至于BS的模拟主动编码,我们提出了一个基于匹配器的模拟预编码方案,因为BS和RIS采用了Los-Mimo天线阵列结构。至于BS的RSMA数字活动预码,我们提出了一个低复杂性近似加权的最小均方误差(AWMMSE)数字编码方案。此外,为了更好地编码性能以及较低的计算复杂性,模型驱动的深层展开的主动编码网络(DFAPN)也是通过将所提出的AWMMSE方案与DL相结合的。然后,为了在BS处获得准确的CSI,以实现提高光谱效率的RSMA预编码方案,我们提出了一个CSI采集网络(CAN),具有低飞行员和反馈信号开销,下行链接飞行员的传输,CSI在此处使用CSI的CSI反馈。 (UES)和BS处的CSI重建被建模为基于变压器的端到端神经网络。
translated by 谷歌翻译
在空中杂种大规模多输入多输出(MIMO)和正交频施加多路复用(OFDM)系统中,如何设计具有有限的飞行员和反馈开销的光谱效率宽带多用户混合波束,这是具有挑战性的。为此,通过将关键传输模块建模为端到端(E2E)神经网络,本文提出了一个数据驱动的深度学习(DL)基于时间划分双工(TDD)的基于数据驱动的深度学习(DL)的统一混合边际框架和具有隐式通道状态信息(CSI)的频分隔双链(FDD)系统。对于TDD系统,提出的基于DL的方法共同对上行链路飞行员组合和下行链路混合光束模块作为E2E神经网络。在FDD系统中,我们将下行链路飞行员传输,上行链路CSI反馈和下行链路混合光束形成模块作为E2E神经网络建模。与分别处理不同模块的常规方法不同,提出的解决方案同时以总和速率作为优化对象优化了所有模块。因此,通过感知空对地面大规模MIMO-OFDM通道样本的固有属性,基于DL的E2E神经网络可以建立从通道到波束形式的映射函数,以便可以避免使用显式通道重建,以减少飞行员和反馈开销。此外,实用的低分辨率相变(PSS)引入了量化约束,从而导致训练神经网络时棘手的梯度反向传播。为了减轻阶段量化误差引起的性能损失,我们采用转移学习策略,以基于假定理想的无限分辨率PSS的预训练网络来进一步调整E2E神经网络。数值结果表明,我们的基于DL的方案比最先进的方案具有相当大的优势。
translated by 谷歌翻译
混合模拟和数字波束成形收发器在解决下一代毫米波(MM波)大规模MIMO(多输入多输出)系统中的昂贵硬件和高训练开销的挑战。然而,在混合架构中缺乏完全数字波束成形和MM波的短相干时间对信道估计施加了额外的约束。在解决这些挑战的前提是,主要集中在窄带信道上,其中采用基于优化的或贪婪算法来导出混合波束形成器。在本文中,我们介绍了用于频率选择,宽带MM波系统的信道估计和混合波束形成的深度学习(DL)方法。特别地,我们考虑大规模的MIMO正交频分复用(MIMO-OFDM)系统,并提出包括卷积神经网络(CNN)的三种不同的DL框架,其接受接收信号的原始数据作为输入和产生信道估计和混合波束形成器在输出。我们还介绍了离线和在线预测方案。数值实验表明,与目前的最先进的优化和DL方法相比,我们的方法提供了更高的频谱效率,较小的计算成本和更少的导频信号,以及对接收的导频数据中的偏差较高的差异,损坏的信道矩阵和传播环境。
translated by 谷歌翻译
本文提出了一种对无线通信中的一类主动感测问题的深度学习方法,其中代理在预定数量的时间帧上与环境顺序地交互以收集信息,以便为最大化一些实用程序函数来执行感测或致动任务。在这样的主动学习设置中,代理需要根据到目前为止所做的观察结果来依次设计自适应感测策略。为了解决如此挑战的问题,其中历史观察的维度随着时间的推移而增加,我们建议使用长期短期记忆(LSTM)网络来利用观察序列中的时间相关性,并将每个观察映射到固定的尺寸状态信息矢量。然后,我们使用深神经网络(DNN)将LSTM状态映射到每个时间帧到下一个测量步骤的设计。最后,我们采用另一个DNN将最终的LSTM状态映射到所需的解决方案。我们调查了无线通信中建议框架的性能框架的性能。特别地,我们考虑用于MMWAVE光束对准的自适应波束形成问题和反射对准的自适应可重构智能表面感测问题。数值结果表明,所提出的深度主动传感策略优于现有的自适应或非一种非应用感测方案。
translated by 谷歌翻译
由于其低复杂性和鲁棒性,机器学习(ML)吸引了对物理层设计问题的巨大研究兴趣,例如信道估计。通道估计通过ML需要在数据集上进行模型训练,该数据集通常包括作为输入和信道数据的接收的导频信号作为输出。在以前的作品中,模型培训主要通过集中式学习(CL)进行,其中整个训练数据集从基站(BS)的用户收集。这种方法引入了数据收集的巨大通信开销。在本文中,为了解决这一挑战,我们提出了一种用于频道估计的联邦学习(FL)框架。我们设计在用户的本地数据集上培训的卷积神经网络(CNN),而不将它们发送到BS。我们为常规和RIS(智能反射表面)开发了基于流的信道估计方案,辅助大规模MIMO(多输入多输出)系统,其中单个CNN为两种情况训练了两个不同的数据集。我们评估噪声和量化模型传输的性能,并表明所提出的方法提供大约16倍的开销比CL,同时保持令人满意的性能接近CL。此外,所提出的架构表现出比最先进的ML的估计误差较低。
translated by 谷歌翻译
由于捕获高角度和时间分辨率测量的能力,毫米波(MMWAVE)带引起了高精度定位应用的显着关注。本文探讨了基于MMWAVE的定位,用于目标本地化问题,其中固定目标广播MMWAVE信号和移动机器人代理尝试侦听信号以定位和导航到目标。提出了三个韵律过程:首先,移动代理使用张量分解方法来检测无线路径及其角度。其次,然后使用机器学习培训的分类器来预测链路状态,这意味着如果最强的路径是视线(LOS)或非LOS(NLO)。对于NLOS案例,链路状态预测器还确定最强路径是否通过一个或多个反射到达。第三,基于链路状态,代理人遵循估计的角度或探索环境。该方法在补充有线跟踪的室内环境的大型数据集上进行了演示,以模拟无线传播。路径估计和链路状态分类也集成到最先进的神经同时定位和映射(SLAM)模块中,以增强相机和基于LIDAR的导航。结果表明,链路状态分类器可以成功地推广到培训集外的完全新环境。另外,具有无线路径估计和链路状态分类器的神经基模块为目标提供快速导航,接近了解目标位置的基线。
translated by 谷歌翻译
本文解决了Terahertz(THZ)通道估计中的两个主要挑战:光束切割现象,即由于频率独立的模拟束缚器和计算复杂性,由于使用超质量数量,因此由于频率非依赖性的模拟光束器和计算复杂性。已知数据驱动的技术可以减轻此问题的复杂性,但通常需要将数据集从用户传输到中央服务器,从而带来了巨大的通信开销。在这项工作中,我们采用联合学习(FL),其中用户仅传输模型参数,而不是整个数据集,以供THZ频道估计来提高通信效率。为了准确估算横梁切开,我们提出了Beamspace支持对准技术,而无需其他硬件。与以前的作品相比,我们的方法提供了更高的频道估计准确性,以及大约$ 68 $ $ 68 $倍的通信开销。
translated by 谷歌翻译
给定有限数量的训练数据样本的分类的基本任务被考虑了具有已知参数统计模型的物理系统。基于独立的学习和统计模型的分类器面临使用小型训练集实现分类任务的主要挑战。具体地,单独依赖基于物理的统计模型的分类器通常遭受它们无法适当地调整底层的不可观察的参数,这导致系统行为的不匹配表示。另一方面,基于学习的分类器通常依赖于来自底层物理过程的大量培训数据,这在最实际的情况下可能不可行。本文提出了一种混合分类方法 - 被称为亚牙线的菌丝 - 利用基于物理的统计模型和基于学习的分类器。所提出的解决方案基于猜想,即通过融合它们各自的优势,刺鼠线将减轻与基于学习和统计模型的分类器的各个方法相关的挑战。所提出的混合方法首先使用可用(次优)统计估计程序来估计不可观察的模型参数,随后使用基于物理的统计模型来生成合成数据。然后,培训数据样本与基于学习的分类器中的合成数据结合到基于神经网络的域 - 对抗训练。具体地,为了解决不匹配问题,分类器将从训练数据和合成数据的映射学习到公共特征空间。同时,培训分类器以在该空间内找到判别特征,以满足分类任务。
translated by 谷歌翻译
全球导航卫星系统通常在城市环境中表现较差,在城市环境中,设备和卫星之间的视线条件的可能性很低,因此需要替代的定位方法才能良好准确。我们提出了Locunet:用于本地化任务的卷积,端到端训练的神经网络,能够从少数基站(BSS)的接收信号强度(RSS)中估算用户的位置。在提出的方法中,要本地化的用户只需将测量的RSS报告给可能位于云中的中央处理单元。使用BSS和RSS测量值的Pathloss无线电图的估计,Locunet可以以最先进的精度定位用户,并在无线电图估计中享有高度鲁棒性。所提出的方法不需要对新环境进行预采样,并且适用于实时应用。此外,提供了两个新颖的数据集,可以在现实的城市环境中对RSS和TOA方法进行数值评估,并为研究社区公开提供。通过使用这些数据集,我们还提供了密集的城市场景中最先进的RSS和基于TOA的方法的公平比较,并以数值显示Locunet优于所有比较方法。
translated by 谷歌翻译
为了减轻阴影衰落和障碍物阻塞的影响,可重新配置的智能表面(RIS)已经成为一种有前途的技术,通过控制具有较少硬件成本和更低的功耗来改善无线通信的信号传输质量。然而,由于大量的RIS被动元件,准确,低延迟和低导频和低导架频道状态信息(CSI)采集仍然是RIS辅助系统的相当大挑战。在本文中,我们提出了一个三阶段的关节通道分解和预测框架来要求CSI。所提出的框架利用了基站(BS)-RIS通道是准静态的两次时间段属性,并且RIS用户设备(UE)通道快速时变。具体而言,在第一阶段,我们使用全双工技术来估计BS的特定天线和RIS之间的信道,解决信道分解中的关键缩放模糊问题。然后,我们设计了一种新型的深度神经网络,即稀疏连接的长短期存储器(SCLSTM),并分别在第二和第三阶段提出基于SCLSTM的算法。该算法可以从级联信道同时分解BS-RIS信道和RIS-UE信道,并捕获RIS-UE信道的时间关系以进行预测。仿真结果表明,我们所提出的框架具有比传统信道估计算法更低的导频开销,并且所提出的基于SCLSTM的算法也可以鲁棒地和有效地实现更准确的CSI采集。
translated by 谷歌翻译
在带有频划分双链体(FDD)的常规多用户多用户多输入多输出(MU-MIMO)系统中,尽管高度耦合,但已单独设计了通道采集和预编码器优化过程。本文研究了下行链路MU-MIMO系统的端到端设计,其中包括试点序列,有限的反馈和预编码。为了解决这个问题,我们提出了一个新颖的深度学习(DL)框架,该框架共同优化了用户的反馈信息生成和基础站(BS)的预编码器设计。 MU-MIMO系统中的每个过程都被智能设计的多个深神经网络(DNN)单元所取代。在BS上,神经网络生成试验序列,并帮助用户获得准确的频道状态信息。在每个用户中,频道反馈操作是由单个用户DNN以分布方式进行的。然后,另一个BS DNN从用户那里收集反馈信息,并确定MIMO预编码矩阵。提出了联合培训算法以端到端的方式优化所有DNN单元。此外,还提出了一种可以避免针对可扩展设计的不同网络大小进行重新训练的培训策略。数值结果证明了与经典优化技术和其他常规DNN方案相比,提出的DL框架的有效性。
translated by 谷歌翻译
由于处理非covex公式的能力,深入研究深度学习(DL)技术以优化多用户多输入单输出(MU-MISO)下行链接系统。但是,现有的深神经网络(DNN)的固定计算结构在系统大小(即天线或用户的数量)方面缺乏灵活性。本文开发了一个双方图神经网络(BGNN)框架,这是一种可扩展的DL溶液,旨在多端纳纳波束形成优化。首先,MU-MISO系统以两分图为特征,其中两个不相交的顶点集(由传输天线和用户组成)通过成对边缘连接。这些顶点互连状态是通过通道褪色系数建模的。因此,将通用的光束优化过程解释为重量双分图上的计算任务。这种方法将波束成型的优化过程分为多个用于单个天线顶点和用户顶点的子操作。分离的顶点操作导致可扩展的光束成型计算,这些计算不变到系统大小。顶点操作是由一组DNN模块实现的,这些DNN模块共同构成了BGNN体系结构。在所有天线和用户中都重复使用相同的DNN,以使所得的学习结构变得灵活地适合网络大小。 BGNN的组件DNN在许多具有随机变化的网络尺寸的MU-MISO配置上进行了训练。结果,训练有素的BGNN可以普遍应用于任意的MU-MISO系统。数值结果验证了BGNN框架比常规方法的优势。
translated by 谷歌翻译
6G无线网络可以预见,以加快物理和网络世界的融合,并以我们部署和利用通信网络的方式实现范式换档。机器学习,尤其是深度学习(DL),将通过提供具有高水平智能的网络的新范式来成为6G的关键技术推动力之一。在本文中,我们介绍了一种新兴的DL体系结构,称为Transformer,并讨论了其对6G网络设计的潜在影响。我们首先讨论变压器和经典DL体系结构之间的差异,并强调变压器的自我发挥机制和强大的代表能力,这使其在应对无线网络设计的各种挑战方面特别有吸引力。具体而言,我们提出了基于变压器的解决方案,用于大规模多输入多输出(MIMO)系统和6G网络中的各种语义通信问题。最后,我们讨论了基于变压器的解决方案中的关键挑战和开放问题,并确定未来在智能6G网络中部署的研究方向。
translated by 谷歌翻译
智能反射表面(IRS)最近对无线通信受到了极大的关注,因为它降低了常规大阵列的硬件复杂性,物理尺寸,重量和成本。但是,IRS的部署需要处理基站(BS)和用户之间的多个渠道链接。此外,BS和IRS梁形器需要关节设计,其中必须迅速重新配置IRS元素。数据驱动的技术(例如深度学习(DL))对于应对这些挑战至关重要。DL的较低计算时间和无模型性质使其与数据瑕疵和环境变化有关。在物理层上,DL已被证明可用于IRS信号检测,通道估计以及使用诸如监督,无监督和强化学习等体系结构进行主动/被动光束成型。本文提供了这些技术,用于设计基于DL的IRS辅助无线系统。
translated by 谷歌翻译
Terahertz频段(0.1---10 THZ)中的无线通信被视为未来第六代(6G)无线通信系统的关键促进技术之一,超出了大量多重输入多重输出(大量MIMO)技术。但是,THZ频率的非常高的传播衰减和分子吸收通常限制了信号传输距离和覆盖范围。从最近在可重构智能表面(RIS)上实现智能无线电传播环境的突破,我们为多跳RIS RIS辅助通信网络提供了一种新型的混合波束形成方案,以改善THZ波段频率的覆盖范围。特别是,部署了多个被动和可控的RIS,以协助基站(BS)和多个单人体用户之间的传输。我们通过利用最新的深钢筋学习(DRL)来应对传播损失的最新进展,研究了BS在BS和RISS上的模拟光束矩阵的联合设计。为了改善拟议的基于DRL的算法的收敛性,然后设计了两种算法,以初始化数字波束形成和使用交替优化技术的模拟波束形成矩阵。仿真结果表明,与基准相比,我们提出的方案能够改善50 \%的THZ通信范围。此外,还表明,我们提出的基于DRL的方法是解决NP-固定光束形成问题的最先进方法,尤其是当RIS辅助THZ通信网络的信号经历多个啤酒花时。
translated by 谷歌翻译
State-of-the-art performance for many emerging edge applications is achieved by deep neural networks (DNNs). Often, these DNNs are location and time sensitive, and the parameters of a specific DNN must be delivered from an edge server to the edge device rapidly and efficiently to carry out time-sensitive inference tasks. In this paper, we introduce AirNet, a novel training and transmission method that allows efficient wireless delivery of DNNs under stringent transmit power and latency constraints. We first train the DNN with noise injection to counter the wireless channel noise. Then we employ pruning to reduce the network size to the available channel bandwidth, and perform knowledge distillation from a larger model to achieve satisfactory performance, despite pruning. We show that AirNet achieves significantly higher test accuracy compared to digital alternatives under the same bandwidth and power constraints. The accuracy of the network at the receiver also exhibits graceful degradation with channel quality, which reduces the requirement for accurate channel estimation. We further improve the performance of AirNet by pruning the network below the available bandwidth, and using channel expansion to provide better robustness against channel noise. We also benefit from unequal error protection (UEP) by selectively expanding more important layers of the network. Finally, we develop an ensemble training approach, which trains a whole spectrum of DNNs, each of which can be used at different channel condition, resolving the impractical memory requirements.
translated by 谷歌翻译