神经科学的基本目标是了解神经活动与行为之间的关系。例如,提取来自神经数据或神经解码的行为意图的能力对于开发有效的脑机接口至关重要。虽然简单的线性模型已应用于此挑战,但它们无法识别重要的非线性关系。因此,识别神经动力学和行为之间的非线性关系的自我监督手段,以计算神经表示,仍然是一个重要的公开问题。为了解决这一挑战,我们生成了一种新的多模式数据集,由果蝇产生的自发行为组成,德罗硫代·马拉替洛克斯 - 神经科学研究中的流行模型生物体。数据集包括来自产生自发动作的动物的六个相机视图的3D无标记运动捕获数据,以及同步获取的双光子显微镜图像捕获被认为驱动动作的下行神经元种群的活动。由于神经和行为方式的大型动物间差异,标准对比度学习和无监督域适应技术难以学习神经动作表示(从描述动作标签计算的嵌入)。为了克服这种缺陷,我们开发了简单但有效的增强,缩短了动物间域间隙,允许我们从神经数据中提取行为相关的尚不讨人不核的信息。这个多模式数据集和我们新的增强套件承诺,以加速自我监督学习方法在神经科学中的应用。
translated by 谷歌翻译
将动物行为与大脑活动相关是神经科学的基本目标,具有建立强大的脑机接口的实际应用。但是,个人之间的域间差距是一种重大问题,可以防止对未标记科目工作的一般模型的培训。由于现在可以从无手动干预的多视图视频序列可以可靠地提取3D构成数据,我们建议使用它来指导神经动作表示的编码以及利用显微镜成像的性质的一组神经和行为增强。为了减少域间差距,在培训期间,我们跨越似乎正在执行类似行动的动物交换神经和行为数据。为了证明这一点,我们在三个非常不同的多模式数据集上测试我们的方法;特征是苍蝇和神经活动的一种,其中一个包含人类神经电压(ECOG)数据,最后是来自不同观点的人类活动的RGB视频数据。
translated by 谷歌翻译
对于人类的行动理解,流行的研究方向是分析具有明确的语义含量的短视频剪辑,例如跳跃和饮酒。然而,了解短语行动的方法不能直接翻译成长期以来的人类动态,如跳舞,即使在语义上也是挑战的挑战。同时,自然语言处理(NLP)社区通过大规模预培训解决了稀缺的类似挑战,这改善了一种模型的几个下游任务。在这项工作中,我们研究如何以自我监督的方式进行分段和群集视频,即Acton Discovery,朝向视频标记的主要障碍。我们提出了一种两级框架,首先通过对应于它们的时间上下文的视频帧的两个增强视图对比其次的视频帧的两个增强视图来获得帧智表示。然后通过k-means群集视频集集中的帧展表示。然后通过从同一簇内的帧形成连续的运动序列来自动提取actons。通过标准化的相互信息和语言熵,我们通过Kendall的Tau和Lexicon构建步骤进行评估框架明智的表现。我们还研究了这个标记化的三种应用:类型分类,行动细分和行动组成。在AIST ++和PKU-MMD数据集上,与几个基线相比,Actons带来了显着的性能改进。
translated by 谷歌翻译
自我监督学习(SSL)是一个新的范式,用于学习判别性表示没有标记的数据,并且与受监督的对手相比,已经达到了可比甚至最新的结果。对比度学习(CL)是SSL中最著名的方法之一,试图学习一般性的信息表示数据。 CL方法主要是针对仅使用单个传感器模态的计算机视觉和自然语言处理应用程序开发的。但是,大多数普遍的计算应用程序都从各种不同的传感器模式中利用数据。虽然现有的CL方法仅限于从一个或两个数据源学习,但我们提出了可可(Crockoa)(交叉模态对比度学习),这是一种自我监督的模型,该模型采用新颖的目标函数来通过计算多功能器数据来学习质量表示形式不同的数据方式,并最大程度地减少了无关实例之间的相似性。我们评估可可对八个最近引入最先进的自我监督模型的有效性,以及五个公共数据集中的两个受监督的基线。我们表明,可可与所有其他方法相比,可可的分类表现出色。同样,可可比其他可用标记数据的十分之一的基线(包括完全监督的模型)的标签高得多。
translated by 谷歌翻译
现实世界的行为通常是由多种代理之间复杂的相互作用来塑造的。为了可靠地研究多代理行为,无监督和自我监督的学习的进步使从轨迹数据中学到了各种不同的行为表示。迄今为止,还没有一组统一的基准测试,可以在广泛的行为分析设置中进行定量和系统地比较方法。我们的目的是通过引入来自现实世界行为神经科学实验的大规模,多代理轨迹数据集来解决这一问题,该数据集涵盖了一系列行为分析任务。我们的数据集由来自通用模型生物的轨迹数据组成,其中有960万帧的小鼠数据和440万帧的飞行数据,在各种实验环境中,例如不同的菌株,相互作用的长度和光遗传学刺激。框架的子集还包括专家注销的行为标签。我们数据集的改进对应于跨多种生物的行为表示,并能够捕获常见行为分析任务的差异。
translated by 谷歌翻译
多代理行为建模旨在了解代理之间发生的交互。我们从行为神经科学,Caltech鼠标社交交互(CALMS21)数据集中提供了一个多代理数据集。我们的数据集由社交交互的轨迹数据组成,从标准居民入侵者测定中自由行为小鼠的视频记录。为了帮助加速行为研究,CALMS21数据集提供基准,以评估三种设置中自动行为分类方法的性能:(1)用于培训由单个注释器的所有注释,(2)用于风格转移以进行学习互动在特定有限培训数据的新行为学习的行为定义和(3)的注释差异。 DataSet由600万个未标记的追踪姿势的交互小鼠组成,以及超过100万帧,具有跟踪的姿势和相应的帧级行为注释。我们的数据集的挑战是能够使用标记和未标记的跟踪数据准确地对行为进行分类,以及能够概括新设置。
translated by 谷歌翻译
通过最大化示例的不同转换“视图”之间的相似性来构建自我监督学习(SSL)构建表示的最先进的方法。然而,在用于创建视图的转换中没有足够的多样性,难以克服数据中的滋扰变量并构建丰富的表示。这激励了数据集本身来查找类似但不同的样本,以彼此的视图。在本文中,我们介绍了我自己的观点(MISOW),一种新的自我监督学习方法,在数据集中定义预测的不同目标。我们的方法背后的想法是主动挖掘观点,发现在网络的表示空间中的邻居中的样本,然后从一个样本的潜在表示,附近样本的表示。在展示计算机愿景中使用的基准测试中,我们突出了在神经科学的新应用中突出了这个想法的力量,其中SSL尚未应用。在测试多单元神经记录时,我们发现Myow在所有示例中表现出其他自我监督的方法(在某些情况下超过10%),并且经常超越监督的基线。通过MOSO,我们表明可以利用数据的多样性来构建丰富的观点,并在增强的新域中利用自我监督,其中包括有限或未知。
translated by 谷歌翻译
最近,自我监督的表示学习(SSRL)在计算机视觉,语音,自然语言处理(NLP)以及最近的其他类型的模式(包括传感器的时间序列)中引起了很多关注。自我监督学习的普及是由传统模型通常需要大量通知数据进行培训的事实所驱动的。获取带注释的数据可能是一个困难且昂贵的过程。已经引入了自我监督的方法,以通过使用从原始数据自由获得的监督信号对模型进行判别预训练来提高训练数据的效率。与现有的对SSRL的评论不同,该评论旨在以单一模式为重点介绍CV或NLP领域的方法,我们旨在为时间数据提供对多模式自我监督学习方法的首次全面审查。为此,我们1)提供现有SSRL方法的全面分类,2)通过定义SSRL框架的关键组件来引入通用管道,3)根据其目标功能,网络架构和潜在应用程序,潜在的应用程序,潜在的应用程序,比较现有模型, 4)查看每个类别和各种方式中的现有多模式技术。最后,我们提出了现有的弱点和未来的机会。我们认为,我们的工作对使用多模式和/或时间数据的域中SSRL的要求有了一个观点
translated by 谷歌翻译
Humans view the world through many sensory channels, e.g., the long-wavelength light channel, viewed by the left eye, or the high-frequency vibrations channel, heard by the right ear. Each view is noisy and incomplete, but important factors, such as physics, geometry, and semantics, tend to be shared between all views (e.g., a "dog" can be seen, heard, and felt). We investigate the classic hypothesis that a powerful representation is one that models view-invariant factors. We study this hypothesis under the framework of multiview contrastive learning, where we learn a representation that aims to maximize mutual information between different views of the same scene but is otherwise compact. Our approach scales to any number of views, and is viewagnostic. We analyze key properties of the approach that make it work, finding that the contrastive loss outperforms a popular alternative based on cross-view prediction, and that the more views we learn from, the better the resulting representation captures underlying scene semantics. Our approach achieves state-of-the-art results on image and video unsupervised learning benchmarks.
translated by 谷歌翻译
物联网中的智能汽车,智能手机和其他设备(物联网)通常具有多个传感器,会产生多模式数据。联合学习支持从不同设备收集大量多模式数据,而无需共享原始数据。转移学习方法有助于将知识从某些设备传输到其他设备。联合转移学习方法受益于联合学习和转移学习。这个新提出的联合转移学习框架旨在将数据岛与隐私保护联系起来。我们的构建基于联合学习和转移学习。与以前的联合转移学习相比,每个用户应具有相同模式的数据(所有单峰或全模式),我们的新框架更为通用,它允许使用用户数据的混合分布。核心策略是为我们的两种用户使用两种不同但固有连接的培训方法。仅对单峰数据(类型1)的用户采用监督学习,而自我监督的学习则用于使用多模式数据(类型2)的用户,以适用于每种模式的功能及其之间的连接。类型2的这种联系知识将在培训的后期阶段有助于1键入1。新框架中的培训可以分为三个步骤。在第一步中,将具有相同模式的数据的用户分组在一起。例如,仅具有声音信号的用户在第一组中,只有图像的用户在第二组中,并且具有多模式数据的用户在第三组中,依此类推。在第二步中,在小组内执行联合学习,在该小组中,根据小组的性质,使用监督的学习和自学学习。大多数转移学习发生在第三步中,从前步骤获得的网络中的相关部分是汇总的(联合)。
translated by 谷歌翻译
学习自我监督的视频表示主要集中在简单数据增强方案中产生的判别实例。然而,学习的表示通常无法通过看不见的相机观点来概括。为此,我们提出了ViewClr,它将自我监督的视频表示不变到相机视点变化。我们介绍了一个视图生成器,可以被视为任何自我监督的预先文本任务的学习增强,以生成视频的潜在视点表示。ViewClr最大化潜像观点表示与原始视点表示的相似性,使学习的视频编码器能够概括未见的相机视点。在跨视图基准数据集的实验,包括NTU RGB + D数据集,显示ViewClr代表了一种最先进的ViewPoint不变自我监控方法。
translated by 谷歌翻译
视频的对比表示高度依赖于数百万未老化视频的可用性。这对于网络上可用的视频来说是实用的,但获取真实应用的大规模视频非常昂贵和费力。因此,在本文中,我们专注于为自我监督学习设计视频增强,首先分析最佳策略来混合视频以创建新的增强视频样本。然后,问题仍然存在,我们可以利用数据混合视频中的其他方式吗?为此,我们提出了跨模块歧管Cutmix(CMMC),其将视频TESSERACT插入到两个不同模式中的特征空间中的另一个视频TESERACT中。我们发现我们的视频混合策略STC-MIX,即视频的初步混合,然后在视频中跨越不同方式的CMMC,提高了学习视频表示的质量。我们对两个下游任务进行了彻底的实验:在两个小型视频数据集UCF101和HMDB51上进行动作识别和视频检索。我们还展示了我们STC-Mix在NTU数据集上的有效性,其中域名知识有限。我们表明,我们对下游任务的STC混合的表现与其他自我监督的方法有关,同时需要较少的培训数据。
translated by 谷歌翻译
通常通过从单个组件的动力学上抽象来构建人口级动力学的模型来研究复杂的时变系统。但是,当构建人群级别的描述时,很容易忽略每个人,以及每个人如何贡献更大的情况。在本文中,我们提出了一种新颖的变压器体系结构,用于从时变数据中学习,该数据构建了个人和集体人口动态的描述。我们没有在一开始就将所有数据结合到我们的模型中,而是开发可分离的体系结构,该体系结构先在单个时间序列上运行,然后再将它们传递给它们。这会导致置换式属性属性,可用于跨不同大小和顺序的系统传输。在证明我们的模型可以应用于在多体系统中成功恢复复杂的相互作用和动力学之后,我们将方法应用于神经系统中的神经元种群。在神经活动数据集上,我们表明我们的多尺度变压器不仅会产生强大的解码性能,而且在转移方面提供了令人印象深刻的性能。我们的结果表明,可以从一种动物的大脑中的神经元学习并传递不同动物大脑中神经元的模型,并在集合和动物之间具有可解释的神经元对应。这一发现为解码并表示大量神经元的新途径开辟了一条新的途径。
translated by 谷歌翻译
基于骨架的人类动作识别最近引起了人们对外观变化的敏感性和更多骨架数据的可访问性的敏感性。但是,即使在实践中捕获的3D骨骼也对观点和方向仍然敏感,并给出了不同人体关节的阻塞和人类关节定位中的误差。骨骼数据的这种视图差异可能会严重影响动作识别的性能。为了解决这个问题,我们在本文中提出了一种新的视图不变的表示方法,而没有任何手动动作标签,用于基于骨架的人类行动识别。具体而言,我们通过最大化从不同观点提取的表示形式之间的相互信息来利用同一个人同时对同一个人进行的多视图骨架数据,然后提出一个全局 - 局部对比度损失,以模拟多规模CO - 空间和时间域中的发生关系。广泛的实验结果表明,所提出的方法对输入骨骼数据的视图差异是可靠的,并显着提高了基于无监督骨架的人类动作方法的性能,从而在两个具有挑战性的多视图上产生了新的最新精确度Pkummd和NTU RGB+d的基准。
translated by 谷歌翻译
我们介绍了一种对比视频表示方法,它使用课程学习在对比度培训中施加动态抽样策略。更具体地说,Concur以易于正面样本(在时间上和语义上相似的剪辑上)开始对比度训练,并且随着训练的进行,它会有效地提高时间跨度,从而有效地采样了硬质阳性(时间为时间和语义上不同)。为了学习更好的上下文感知表示形式,我们还提出了一个辅助任务,以预测积极剪辑之间的时间距离。我们对两个流行的动作识别数据集进行了广泛的实验,即UCF101和HMDB51,我们提出的方法在两项视频动作识别和视频检索的基准任务上实现了最新的性能。我们通过使用R(2+1)D和C3D编码器以及对Kinetics-400和Kinetics-200200数据集的R(2+1)D和C3D编码器以及预训练的影响来探讨编码器骨架和预训练策略的影响。此外,一项详细的消融研究显示了我们提出的方法的每个组成部分的有效性。
translated by 谷歌翻译
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
translated by 谷歌翻译
The remarkable success of deep learning in various domains relies on the availability of large-scale annotated datasets. However, obtaining annotations is expensive and requires great effort, which is especially challenging for videos. Moreover, the use of human-generated annotations leads to models with biased learning and poor domain generalization and robustness. As an alternative, self-supervised learning provides a way for representation learning which does not require annotations and has shown promise in both image and video domains. Different from the image domain, learning video representations are more challenging due to the temporal dimension, bringing in motion and other environmental dynamics. This also provides opportunities for video-exclusive ideas that advance self-supervised learning in the video and multimodal domain. In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain. We summarize these methods into four different categories based on their learning objectives: 1) pretext tasks, 2) generative learning, 3) contrastive learning, and 4) cross-modal agreement. We further introduce the commonly used datasets, downstream evaluation tasks, insights into the limitations of existing works, and the potential future directions in this area.
translated by 谷歌翻译
Videos are a rich source of multi-modal supervision. In this work, we learn representations using self-supervision by leveraging three modalities naturally present in videos: visual, audio and language streams. To this end, we introduce the notion of a multimodal versatile network -a network that can ingest multiple modalities and whose representations enable downstream tasks in multiple modalities. In particular, we explore how best to combine the modalities, such that fine-grained representations of the visual and audio modalities can be maintained, whilst also integrating text into a common embedding. Driven by versatility, we also introduce a novel process of deflation, so that the networks can be effortlessly applied to the visual data in the form of video or a static image. We demonstrate how such networks trained on large collections of unlabelled video data can be applied on video, video-text, image and audio tasks. Equipped with these representations, we obtain state-of-the-art performance on multiple challenging benchmarks including UCF101, HMDB51, Kinetics600, Audioset and ESC-50 when compared to previous self-supervised work. Our models are publicly available [1, 2, 3]. * Equal contribution. † Work done during an internship at DeepMind. 34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
未来的活动预期是在Egocentric视觉中具有挑战性问题。作为标准的未来活动预期范式,递归序列预测遭受错误的累积。为了解决这个问题,我们提出了一个简单有效的自我监管的学习框架,旨在使中间表现为连续调节中间代表性,以产生表示(a)与先前观察到的对比的当前时间戳框架中的新颖信息内容和(b)反映其与先前观察到的帧的相关性。前者通过最小化对比损失来实现,并且后者可以通过动态重量机制来实现在观察到的内容中的信息帧中,具有当前帧的特征与观察到的帧之间的相似性比较。通过多任务学习可以进一步增强学习的最终视频表示,该多任务学习在目标活动标签上执行联合特征学习和自动检测到的动作和对象类令牌。在大多数自我传统视频数据集和两个第三人称视频数据集中,SRL在大多数情况下急剧表现出现有的现有最先进。通过实验性事实,还可以准确识别支持活动语义的行动和对象概念的实验性。
translated by 谷歌翻译
We present a self-supervised Contrastive Video Representation Learning (CVRL) method to learn spatiotemporal visual representations from unlabeled videos. Our representations are learned using a contrastive loss, where two augmented clips from the same short video are pulled together in the embedding space, while clips from different videos are pushed away. We study what makes for good data augmentations for video self-supervised learning and find that both spatial and temporal information are crucial. We carefully design data augmentations involving spatial and temporal cues. Concretely, we propose a temporally consistent spatial augmentation method to impose strong spatial augmentations on each frame of the video while maintaining the temporal consistency across frames. We also propose a sampling-based temporal augmentation method to avoid overly enforcing invariance on clips that are distant in time. On Kinetics-600, a linear classifier trained on the representations learned by CVRL achieves 70.4% top-1 accuracy with a 3D-ResNet-50 (R3D-50) backbone, outperforming ImageNet supervised pre-training by 15.7% and SimCLR unsupervised pre-training by 18.8% using the same inflated R3D-50. The performance of CVRL can be further improved to 72.9% with a larger R3D-152 (2× filters) backbone, significantly closing the gap between unsupervised and supervised video representation learning. Our code and models will be available at https://github.com/tensorflow/models/tree/master/official/.
translated by 谷歌翻译