最佳运输是比较措施的框架,以便将一项措施运输到另一种措施。最近的作品旨在通过引入各种形式的结构来改善最佳运输计划。我们将新颖的订单约束引入最佳运输公式中,以允许结合结构。我们定义了一种有效的方法,用于获取可解释的解决方案,该解决方案比标准方法要好得多。提供了该方法的理论特性。我们通过实验证明,使用E-SNLI(Stanford自然语言推断)数据集改善了秩序约束,该数据集包括人类宣传的理由以及几个图像色传递示例。
translated by 谷歌翻译
我们研究了两种可能不同质量的度量之间的不平衡最佳运输(UOT),其中最多是$ n $组件,其中标准最佳运输(OT)的边际约束是通过kullback-leibler差异与正则化因子$ \ tau $放松的。尽管仅在文献中分析了具有复杂性$ o \ big(\ tfrac {\ tau n^2 \ log(n)} {\ varepsilon} \ log \ big(\ tfrac {\ log( n)} {{{\ varepsilon}} \ big)\ big)$)$用于实现错误$ \ varepsilon $,它们与某些深度学习模型和密集的输出运输计划不兼容,强烈阻碍了实用性。虽然被广泛用作计算现代深度学习应用中UOT的启发式方法,并且在稀疏的OT中表现出成功,但尚未正式研究用于UOT的梯度方法。为了填补这一空白,我们提出了一种基于梯度外推法(Gem-uot)的新颖算法,以找到$ \ varepsilon $ -Approximate解决方案,以解决$ o \ big中的UOT问题(\ kappa n^2 \ log \ log \ big(big) \ frac {\ tau n} {\ varepsilon} \ big)\ big)$,其中$ \ kappa $是条件号,具体取决于两个输入度量。我们的算法是通过优化平方$ \ ell_2 $ -norm UOT目标的新的双重配方设计的,从而填补了缺乏稀疏的UOT文献。最后,我们在运输计划和运输距离方面建立了UOT和OT之间近似误差的新颖表征。该结果阐明了一个新的主要瓶颈,该瓶颈被强大的OT文献忽略了:尽管OT放松了OT,因为UOT承认对离群值的稳健性,但计算出的UOT距离远离原始OT距离。我们通过基于Gem-uot从UOT中检索的原则方法来解决此类限制,并使用微调的$ \ tau $和后进程投影步骤来解决。关于合成和真实数据集的实验验证了我们的理论,并证明了我们的方法的良好性能。
translated by 谷歌翻译
最佳运输(OT)自然地出现在广泛的机器学习应用中,但可能经常成为计算瓶颈。最近,一行作品建议大致通过在低秩子空间中搜索\ emph {transport计划}来解决OT。然而,最佳运输计划通常不是低秩,这往往会产生大的近似误差。例如,当存在Monge的\ EMPH {Transport Map}时,运输计划是完整的排名。本文涉及具有足够精度和效率的OT距离的计算。提出了一种用于OT的新颖近似,其中运输计划可以分解成低级矩阵和稀疏矩阵的总和。理论上我们分析近似误差。然后设计增强拉格朗日方法以有效地计算运输计划。
translated by 谷歌翻译
Optimal transport (OT) has become a widely used tool in the machine learning field to measure the discrepancy between probability distributions. For instance, OT is a popular loss function that quantifies the discrepancy between an empirical distribution and a parametric model. Recently, an entropic penalty term and the celebrated Sinkhorn algorithm have been commonly used to approximate the original OT in a computationally efficient way. However, since the Sinkhorn algorithm runs a projection associated with the Kullback-Leibler divergence, it is often vulnerable to outliers. To overcome this problem, we propose regularizing OT with the \beta-potential term associated with the so-called $\beta$-divergence, which was developed in robust statistics. Our theoretical analysis reveals that the $\beta$-potential can prevent the mass from being transported to outliers. We experimentally demonstrate that the transport matrix computed with our algorithm helps estimate a probability distribution robustly even in the presence of outliers. In addition, our proposed method can successfully detect outliers from a contaminated dataset
translated by 谷歌翻译
比较图形等结构的对象是许多学习任务中涉及的基本操作。为此,基于最优传输(OT)的Gromov-Wasserstein(GW)距离已被证明可以成功处理相关对象的特定性质。更具体地说,通过节点连接关系,GW在图表上运行,视为特定空间上的概率测量。在OT的核心处是质量守恒的想法,这在两个被认为的图表中的所有节点之间施加了耦合。我们在本文中争辩说,这种财产可能对图形字典或分区学习等任务有害,我们通过提出新的半轻松的Gromov-Wasserstein发散来放松它。除了立即计算福利之外,我们讨论其属性,并表明它可以导致有效的图表字典学习算法。我们经验展示其对图形上的复杂任务的相关性,例如分区,聚类和完成。
translated by 谷歌翻译
不平衡最佳传输(UOT)扩展了最佳传输(OT),以考虑质量变化以比较分布。这是使IT在ML应用程序中成功的至关重要,使其对数据标准化和异常值具有强大。基线算法陷入沉降,但其收敛速度可能比OT更慢。在这项工作中,我们确定了这种缺陷的原因,即缺乏迭代的全球正常化,其等效地对应于双口电的翻译。我们的第一款贡献利用了这种想法来开发一种可怕的加速陷阱算法(为UOT开发了一种可怕的陷阱算法(创建了“翻译不变的烟囱”),弥合了与OT的计算间隙。我们的第二次贡献侧重于1-D UOT,并提出了一个适用于这种翻译不变制剂的弗兰克 - 沃尔夫求解器。每个步骤的线性oracle都能求解1-D OT问题,从而导致每个迭代的线性时间复杂度。我们的最后贡献将这种方法扩展到计算1-D措施的UOT BaryCenter。数值模拟展示这三种方法带来的收敛速度改进。
translated by 谷歌翻译
Optimal transport (OT) has become exceedingly popular in machine learning, data science, and computer vision. The core assumption in the OT problem is the equal total amount of mass in source and target measures, which limits its application. Optimal Partial Transport (OPT) is a recently proposed solution to this limitation. Similar to the OT problem, the computation of OPT relies on solving a linear programming problem (often in high dimensions), which can become computationally prohibitive. In this paper, we propose an efficient algorithm for calculating the OPT problem between two non-negative measures in one dimension. Next, following the idea of sliced OT distances, we utilize slicing to define the sliced OPT distance. Finally, we demonstrate the computational and accuracy benefits of the sliced OPT-based method in various numerical experiments. In particular, we show an application of our proposed Sliced-OPT in noisy point cloud registration.
translated by 谷歌翻译
We study a family of adversarial multiclass classification problems and provide equivalent reformulations in terms of: 1) a family of generalized barycenter problems introduced in the paper and 2) a family of multimarginal optimal transport problems where the number of marginals is equal to the number of classes in the original classification problem. These new theoretical results reveal a rich geometric structure of adversarial learning problems in multiclass classification and extend recent results restricted to the binary classification setting. A direct computational implication of our results is that by solving either the barycenter problem and its dual, or the MOT problem and its dual, we can recover the optimal robust classification rule and the optimal adversarial strategy for the original adversarial problem. Examples with synthetic and real data illustrate our results.
translated by 谷歌翻译
给定数据点之间的一组差异测量值,确定哪种度量表示与输入测量最“一致”或最能捕获数据相关几何特征的度量是许多机器学习算法的关键步骤。现有方法仅限于特定类型的指标或小问题大小,因为在此类问题中有大量的度量约束。在本文中,我们提供了一种活跃的集合算法,即项目和忘记,该算法使用Bregman的预测,以解决许多(可能是指数)不平等约束的度量约束问题。我们提供了\ textsc {project and Hoses}的理论分析,并证明我们的算法会收敛到全局最佳解决方案,并以指数速率渐近地渐近地衰减了当前迭代的$ L_2 $距离。我们证明,使用我们的方法,我们可以解决三种类型的度量约束问题的大型问题实例:一般体重相关聚类,度量近距离和度量学习;在每种情况下,就CPU时间和问题尺寸而言,超越了艺术方法的表现。
translated by 谷歌翻译
最近已扩展了最小方形聚类(MSSC)或K-均值类型聚类的最小总和,以利用每个群集的基数的先验知识。这种知识用于提高性能以及解决方案质量。在本文中,我们提出了一种基于分支和切割技术的精确方法,以解决基数受限的MSSC。对于下边界的例程,我们使用Rujeerapaiboon等人最近提出的半决赛编程(SDP)放松。 [Siam J. Optim。 29(2),1211-1239,(2019)]。但是,这种放松只能用于小型实例中的分支和切割方法。因此,我们得出了一种新的SDP松弛,该松弛随着实例大小和簇的数量更好。在这两种情况下,我们都通过添加多面体切割来增强结合。从量身定制的分支策略中受益,该策略会实施成对的约束,我们减少了儿童节点中出现的问题的复杂性。相反,对于上限,我们提出了一个本地搜索过程,该过程利用在每个节点上求解的SDP松弛的解。计算结果表明,所提出的算法在全球范围内首次求解了大小的现实实例,比通过最新精确方法求解的算法大10倍。
translated by 谷歌翻译
本文提出了弗兰克 - 沃尔夫(FW)的新变种​​,称为$ k $ fw。标准FW遭受缓慢的收敛性:迭代通常是Zig-zag作为更新方向振荡约束集的极端点。新变种,$ k $ fw,通过在每次迭代中使用两个更强的子问题oracelles克服了这个问题。第一个是$ k $线性优化Oracle($ k $ loo),计算$ k $最新的更新方向(而不是一个)。第二个是$ k $方向搜索($ k $ ds),最大限度地减少由$ k $最新更新方向和之前迭代表示的约束组的目标。当问题解决方案承认稀疏表示时,奥克斯都易于计算,而且$ k $ FW会迅速收敛,以便平滑凸起目标和几个有趣的约束集:$ k $ fw实现有限$ \ frac {4l_f ^ 3d ^} { \ Gamma \ Delta ^ 2} $融合在多台和集团规范球上,以及光谱和核规范球上的线性收敛。数值实验验证了$ k $ fw的有效性,并展示了现有方法的数量级加速。
translated by 谷歌翻译
作为度量度量空间的有效度量,Gromov-Wasserstein(GW)距离显示了匹配结构化数据(例如点云和图形)问题的潜力。但是,由于其较高的计算复杂性,其实践中的应用受到限制。为了克服这一挑战,我们提出了一种新颖的重要性稀疏方法,称为SPAR-GW,以有效地近似GW距离。特别是,我们的方法没有考虑密集的耦合矩阵,而是利用一种简单但有效的采样策略来构建稀疏的耦合矩阵,并使用几个计算进行更新。我们证明了所提出的SPAR-GW方法适用于GW距离,并以任意地面成本适用于GW距离,并且将复杂性从$ \ Mathcal {o}(n^4)$降低到$ \ Mathcal {o}(n^{2) +\ delta})$对于任意的小$ \ delta> 0 $。另外,该方法可以扩展到近似GW距离的变体,包括熵GW距离,融合的GW距离和不平衡的GW距离。实验表明,在合成和现实世界任务中,我们的SPAR-GW对最先进的方法的优越性。
translated by 谷歌翻译
由于机器学习,统计和科学的应用,多边缘最佳运输(MOT)引起了极大的兴趣。但是,在大多数应用中,MOT的成功受到缺乏有效算法的严重限制。实际上,MOT一般需要在边际K及其支撑大小n的数量中指数时间n。本文开发了一个关于“结构”在poly(n,k)时间中可溶解的一般理论。我们开发了一个统一的算法框架,用于通过表征不同算法所需的“结构”来解决poly(n,k)时间中的MOT,这是根据双重可行性甲骨文的简单变体所需的。该框架有几个好处。首先,它使我们能够证明当前是最流行的MOT算法的Sinkhorn算法比其他算法要在poly(n,k)时间中求解MOT所需的结构更严格。其次,我们的框架使得为给定的MOT问题开发poly(n,k)时间算法变得更加简单。特别是(大约)解决双重可行性Oracle是必要和足够的 - 这更适合标准算法技术。我们通过为三个通用类成本结构类别的poly(n,k)时间算法开发poly(n,k)时间算法来说明这种易用性:(1)图形结构; (2)设定优化结构; (3)低阶和稀疏结构。对于结构(1),我们恢复了Sindhorn具有poly(n,k)运行时的已知结果;此外,我们为计算精确且稀疏的解决方案提供了第一个poly(n,k)时间算法。对于结构(2) - (3),我们给出了第一个poly(n,k)时间算法,甚至用于近似计算。这三个结构一起涵盖了许多MOT的当前应用。
translated by 谷歌翻译
将离散域上的功能集成到神经网络中是开发其推理离散对象的能力的关键。但是,离散域是(1)自然不适合基于梯度的优化,并且(2)与依赖于高维矢量空间中表示形式的深度学习体系结构不相容。在这项工作中,我们解决了设置功能的两个困难,这些功能捕获了许多重要的离散问题。首先,我们开发了将设置功能扩展到低维连续域的框架,在该域中,许多扩展是自然定义的。我们的框架包含许多众所周知的扩展,作为特殊情况。其次,为避免不良的低维神经网络瓶颈,我们将低维扩展转换为高维空间中的表示形式,从半际计划进行组合优化的成功中获得了灵感。从经验上讲,我们观察到扩展对无监督的神经组合优化的好处,特别是具有高维其表示。
translated by 谷歌翻译
形状约束,例如非负,单调性,凸度或超模型性,在机器学习和统计的各种应用中都起着关键作用。但是,将此方面的信息以艰苦的方式(例如,在间隔的所有点)纳入预测模型,这是一个众所周知的具有挑战性的问题。我们提出了一个统一和模块化的凸优化框架,依赖于二阶锥(SOC)拧紧,以编码属于矢量值重现的载体内核Hilbert Spaces(VRKHSS)的模型对函数衍生物的硬仿射SDP约束。所提出的方法的模块化性质允许同时处理多个形状约束,并将无限数量的约束限制为有限的许多。我们证明了所提出的方案的收敛及其自适应变体的收敛性,利用VRKHSS的几何特性。由于基于覆盖的拧紧构造,该方法特别适合具有小到中等输入维度的任务。该方法的效率在形状优化,机器人技术和计量经济学的背景下进行了说明。
translated by 谷歌翻译
多边缘最优运输(MOT)是最佳运输到多个边缘的概括。最佳运输已经进化为许多机器学习应用中的重要工具,其多边缘扩展开辟了解决机器学习领域的新挑战。然而,MOT的使用很大程度上受到其计算复杂性的影响,其在边缘数量中呈指数级尺度。幸运的是,在许多应用程序中,例如重心或插值问题,成本函数遵守结构,最近被利用以开发有效的计算方法。在这项工作中,我们可以为这些方法推导计算范围。以$ N $积分支持$ M $ M $ M $ Myginal发行版,我们提供了$ \ Mathcal {\ Tilde O}(D(g)Mn ^ 2 \ epsilon ^ { - 2})$ \ \ epsilon $-Accuracy当问题与直径为D(g)$的树相关联时。对于Wassersein的特殊情况,这对应于星形树,我们的界限与现有的复杂性对齐。
translated by 谷歌翻译
最佳运输(OT)背后的匹配原理在机器学习中起着越来越重要的作用,这一趋势可以观察到ot被用来消除应用程序中的数据集(例如,单细胞基因组学)或用于改善更复杂的方法(例如,平衡平衡)注意变形金刚或自我监督的学习)。为了扩展到更具挑战性的问题,越来越多的共识要求求解器可以在数百万而不是数千点上运作。在\ cite {scetbon2021lowrank}中提倡的低级最佳运输方法(LOT)方法在这方面有几个诺言,并被证明可以补充更确定的熵正则化方法,能够将自己插入更复杂的管道中,例如Quadratic OT。批次将低成本耦合的搜索限制在具有低位级等级的耦合方面,在感兴趣的情况下产生线性时间算法。但是,只有在比较感兴趣的属性时,只有将批次方法视为熵正则化的合法竞争者,这些诺言才能实现,记分卡通常包含理论属性(统计复杂性和与其他方法)或实际方面(偏见,偏见,偏见,依据,,依据,统计复杂性和关系)高参数调整,初始化)。我们针对本文中的每个领域,以巩固计算OT中低级别方法的影响。
translated by 谷歌翻译
最小的平方和群集(MSSC)或K-Means型聚类,传统上被认为是无监督的学习任务。近年来,使用背景知识来提高集群质量,促进聚类过程的可解释性已成为数学优化和机器学习研究的热门研究课题。利用数据群集中的背景信息的问题称为半监督或约束群集。在本文中,我们为半监控MSSC提供了一种新的分支和绑定算法,其中背景知识被包含为成对必须 - 链接和无法链接约束。对于较低的界限,我们解决了MSSC离散优化模型的Semidefinite编程宽松,并使用了用于加强界限的纤维平面程序。相反,通过使用整数编程工具,我们提出了将K-Means算法适应受约束的情况。这是第一次,所提出的全局优化算法有效地管理,以解决现实世界的情况,最高可达800个数据点,具有必要的必须 - 链接和无法链接约束以及通用数量的功能。这个问题大小大约比最先进的精确算法解决的实例大约四倍。
translated by 谷歌翻译
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard, because it contains vector cardinality minimization as a special case.In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is Ω(r(m + n) log mn), where m, n are the dimensions of the matrix, and r is its rank.The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
translated by 谷歌翻译
We introduce a class of first-order methods for smooth constrained optimization that are based on an analogy to non-smooth dynamical systems. Two distinctive features of our approach are that (i) projections or optimizations over the entire feasible set are avoided, in stark contrast to projected gradient methods or the Frank-Wolfe method, and (ii) iterates are allowed to become infeasible, which differs from active set or feasible direction methods, where the descent motion stops as soon as a new constraint is encountered. The resulting algorithmic procedure is simple to implement even when constraints are nonlinear, and is suitable for large-scale constrained optimization problems in which the feasible set fails to have a simple structure. The key underlying idea is that constraints are expressed in terms of velocities instead of positions, which has the algorithmic consequence that optimizations over feasible sets at each iteration are replaced with optimizations over local, sparse convex approximations. In particular, this means that at each iteration only constraints that are violated are taken into account. The result is a simplified suite of algorithms and an expanded range of possible applications in machine learning.
translated by 谷歌翻译