视频预测是一个推断任务,可以预测给定过去帧的未来帧,而视频框架插值是一个插值任务,可以估算两个帧之间的中间帧。我们目睹了视频框架插值的巨大进步,但野外的一般视频预测仍然是一个悬而未决的问题。受视频框架插值的照片真实结果的启发,我们为视频框架插值提供了一个新的优化框架,用于视频预测,其中我们根据插值模型解决了推断问题。我们的视频预测框架是基于优化的,而无需训练数据集,而无需培训数据集,因此训练数据和测试数据之间没有域间隙问题。另外,我们的方法不需要任何其他信息,例如语义或实例地图,这使我们的框架适用于任何视频。关于CityScapes,Kitti,Davis,Middlebury和Vimeo90K数据集的广泛实验表明,在一般情况下,我们的视频预测结果非常强大,我们的方法优于其他需要大量培训数据或额外语义信息的视频预测方法。
translated by 谷歌翻译
Given two consecutive frames, video interpolation aims at generating intermediate frame(s) to form both spatially and temporally coherent video sequences. While most existing methods focus on single-frame interpolation, we propose an end-to-end convolutional neural network for variable-length multi-frame video interpolation, where the motion interpretation and occlusion reasoning are jointly modeled. We start by computing bi-directional optical flow between the input images using a U-Net architecture. These flows are then linearly combined at each time step to approximate the intermediate bi-directional optical flows. These approximate flows, however, only work well in locally smooth regions and produce artifacts around motion boundaries. To address this shortcoming, we employ another U-Net to refine the approximated flow and also predict soft visibility maps. Finally, the two input images are warped and linearly fused to form each intermediate frame. By applying the visibility maps to the warped images before fusion, we exclude the contribution of occluded pixels to the interpolated intermediate frame to avoid artifacts. Since none of our learned network parameters are time-dependent, our approach is able to produce as many intermediate frames as needed. To train our network, we use 1,132 240-fps video clips, containing 300K individual video frames. Experimental results on several datasets, predicting different numbers of interpolated frames, demonstrate that our approach performs consistently better than existing methods.
translated by 谷歌翻译
We address the problem of synthesizing new video frames in an existing video, either in-between existing frames (interpolation), or subsequent to them (extrapolation). This problem is challenging because video appearance and motion can be highly complex. Traditional optical-flow-based solutions often fail where flow estimation is challenging, while newer neural-network-based methods that hallucinate pixel values directly often produce blurry results. We combine the advantages of these two methods by training a deep network that learns to synthesize video frames by flowing pixel values from existing ones, which we call deep voxel flow. Our method requires no human supervision, and any video can be used as training data by dropping, and then learning to predict, existing frames. The technique is efficient, and can be applied at any video resolution. We demonstrate that our method produces results that both quantitatively and qualitatively improve upon the state-ofthe-art.
translated by 谷歌翻译
不确定性在未来预测中起关键作用。未来是不确定的。这意味着可能有很多可能的未来。未来的预测方法应涵盖坚固的全部可能性。在自动驾驶中,涵盖预测部分中的多种模式对于做出安全至关重要的决策至关重要。尽管近年来计算机视觉系统已大大提高,但如今的未来预测仍然很困难。几个示例是未来的不确定性,全面理解的要求以及嘈杂的输出空间。在本论文中,我们通过以随机方式明确地对运动进行建模并学习潜在空间中的时间动态,从而提出了解决这些挑战的解决方案。
translated by 谷歌翻译
可以通过定期预测未来的框架以增强虚拟现实应用程序中的用户体验,从而解决了低计算设备上图形渲染高帧速率视频的挑战。这是通过时间视图合成(TVS)的问题来研究的,该问题的目标是预测给定上一个帧的视频的下一个帧以及上一个和下一个帧的头部姿势。在这项工作中,我们考虑了用户和对象正在移动的动态场景的电视。我们设计了一个将运动解散到用户和对象运动中的框架,以在预测下一帧的同时有效地使用可用的用户运动。我们通过隔离和估计过去框架的3D对象运动,然后推断它来预测对象的运动。我们使用多平面图像(MPI)作为场景的3D表示,并将对象运动作为MPI表示中相应点之间的3D位移建模。为了在估计运动时处理MPI中的稀疏性,我们将部分卷积和掩盖的相关层纳入了相应的点。然后将预测的对象运动与给定的用户或相机运动集成在一起,以生成下一帧。使用不合格的填充模块,我们合成由于相机和对象运动而发现的区域。我们为动态场景的电视开发了一个新的合成数据集,该数据集由800个以全高清分辨率组成的视频组成。我们通过数据集和MPI Sintel数据集上的实验表明我们的模型优于文献中的所有竞争方法。
translated by 谷歌翻译
新颖的视图合成(NVS)和视频预测(VP)通常被视为计算机视觉中的不相交任务。但是,它们都可以看作是观察空间时代世界的方法:NVS的目的是从新的角度综合一个场景,而副总裁则旨在从新的时间点观看场景。这两个任务提供了互补的信号以获得场景表示形式,因为观点从空间观察中变化为深度的变化,并且时间观察为相机和单个对象的运动提供了信息。受这些观察的启发,我们建议研究时空(背心)中视频外推的问题。我们提出了一个模型,该模型利用了两项任务的自学和互补线索,而现有方法只能解决其中之一。实验表明,我们的方法比室内和室外现实世界数据集上的几种最先进的NVS和VP方法更好地实现了性能。
translated by 谷歌翻译
从视频中获得地面真相标签很具有挑战性,因为在像素流标签的手动注释非常昂贵且费力。此外,现有的方法试图将合成数据集的训练模型调整到真实的视频中,该视频不可避免地遭受了域差异并阻碍了现实世界应用程序的性能。为了解决这些问题,我们提出了RealFlow,这是一个基于期望最大化的框架,可以直接从任何未标记的现实视频中创建大规模的光流数据集。具体而言,我们首先估计一对视频帧之间的光流,然后根据预测流从该对中合成新图像。因此,新图像对及其相应的流可以被视为新的训练集。此外,我们设计了一种逼真的图像对渲染(RIPR)模块,该模块采用软磁性裂口和双向孔填充技术来减轻图像合成的伪像。在E-Step中,RIPR呈现新图像以创建大量培训数据。在M-Step中,我们利用生成的训练数据来训练光流网络,该数据可用于估计下一个E步骤中的光流。在迭代学习步骤中,流网络的能力逐渐提高,流量的准确性以及合成数据集的质量也是如此。实验结果表明,REALFLOW的表现优于先前的数据集生成方法。此外,基于生成的数据集,我们的方法与受监督和无监督的光流方法相比,在两个标准基准测试方面达到了最先进的性能。我们的代码和数据集可从https://github.com/megvii-research/realflow获得
translated by 谷歌翻译
A difficult example for video frame interpolation. Our approach produces a high-quality result in spite of the delicate flamingo leg that is subject to large motion. This is a video figure that is best viewed using Adobe Reader.
translated by 谷歌翻译
translated by 谷歌翻译
我们提出了一种用于视频帧插值(VFI)的实时中流估计算法。许多最近的基于流的VFI方法首先估计双向光学流,然后缩放并将它们倒转到近似中间流动,导致运动边界上的伪像。RIFE使用名为IFNET的神经网络,可以直接估计中间流量从粗细流,速度更好。我们设计了一种用于训练中间流动模型的特权蒸馏方案,这导致了大的性能改善。Rife不依赖于预先训练的光流模型,可以支持任意时间的帧插值。实验表明,普里埃雷在若干公共基准上实现了最先进的表现。\ url {https://github.com/hzwer/arxiv2020-rife}。
translated by 谷歌翻译
Figure 1: Our method can synthesize novel views in both space and time from a single monocular video of a dynamic scene. Here we show video results with various configurations of fixing and interpolating view and time (left), as well as a visualization of the recovered scene geometry (right). Please view with Adobe Acrobat or KDE Okular to see animations.
translated by 谷歌翻译
Existing state-of-the-art method for audio-visual conditioned video prediction uses the latent codes of the audio-visual frames from a multimodal stochastic network and a frame encoder to predict the next visual frame. However, a direct inference of per-pixel intensity for the next visual frame from the latent codes is extremely challenging because of the high-dimensional image space. To this end, we propose to decouple the audio-visual conditioned video prediction into motion and appearance modeling. The first part is the multimodal motion estimation module that learns motion information as optical flow from the given audio-visual clip. The second part is the context-aware refinement module that uses the predicted optical flow to warp the current visual frame into the next visual frame and refines it base on the given audio-visual context. Experimental results show that our method achieves competitive results on existing benchmarks.
translated by 谷歌翻译
视频介绍的关键是使用尽可能多的参考帧中的相关信息。现有基于流的传播方法将视频合成过程分为多个步骤:流程完成 - >像素传播 - >综合。但是,存在一个很大的缺点,即每个步骤中的错误继续在下一步中积累和放大。为此,我们为流提供的视频介绍(ECFVI)提出了一个错误补偿框架,该框架利用基于流的方法并抵消了其弱点。我们通过新设计的流程完成模块和利用错误指南图的错误补偿网络来解决弱点。我们的方法极大地提高了时间的一致性和完整视频的视觉质量。实验结果表明,与最先进的方法相比,我们提出的方法的卓越性能随X6的速度提高了。此外,我们通过补充现有测试数据集的弱点来提出一个新的基准数据集,以评估。
translated by 谷歌翻译
视频框架插值〜(VFI)算法近年来由于数据驱动算法及其实现的前所未有的进展,近年来有了显着改善。最近的研究引入了高级运动估计或新颖的扭曲方法,以解决具有挑战性的VFI方案。但是,没有发表的VFI作品认为插值误差(IE)的空间不均匀特征。这项工作引入了这样的解决方案。通过密切检查光流与IE之间的相关性,本文提出了新的错误预测指标,该指标将中间框架分为与不同IE水平相对应的不同区域。它基于IE驱动的分割,并通过使用新颖的错误控制损耗函数,引入了一组空间自适应插值单元的合奏,该单元逐步处理并集成了分段区域。这种空间合奏会产生有效且具有诱人的VFI解决方案。对流行视频插值基准测试的广泛实验表明,所提出的解决方案在当前兴趣的应用中优于当前最新(SOTA)。
translated by 谷歌翻译
滚动快门(RS)失真可以解释为在RS摄像机曝光期间,随着时间的推移从瞬时全局快门(GS)框架中挑选一排像素。这意味着每个即时GS帧的信息部分,依次是嵌入到行依赖性失真中。受到这一事实的启发,我们解决了扭转这一过程的挑战性任务,即从rs失真中的图像中提取未变形的GS框架。但是,由于RS失真与其他因素相结合,例如读数设置以及场景元素与相机的相对速度,因此仅利用临时相邻图像之间的几何相关性的型号,在处理数据中,具有不同的读数设置和动态场景的数据中遭受了不良的通用性。带有相机运动和物体运动。在本文中,我们建议使用双重RS摄像机捕获的一对图像,而不是连续的框架,而RS摄像机则具有相反的RS方向,以完成这项极具挑战性的任务。基于双重反转失真的对称和互补性,我们开发了一种新型的端到端模型,即IFED,以通过卢比时间对速度场的迭代学习来生成双重光流序列。广泛的实验结果表明,IFED优于天真的级联方案,以及利用相邻RS图像的最新艺术品。最重要的是,尽管它在合成数据集上进行了训练,但显示出在从现实世界中的RS扭曲的动态场景图像中检索GS框架序列有效。代码可在https://github.com/zzh-tech/dual-versed-rs上找到。
translated by 谷歌翻译
我们提出了一种便携式多型摄像头系统,该系统具有专用模型,用于动态场景中的新型视图和时间综合。我们的目标是使用我们的便携式多座相机从任何角度从任何角度出发为动态场景提供高质量的图像。为了实现这种新颖的观点和时间综合,我们开发了一个配备了五个相机的物理多型摄像头,以在时间和空间域中训练神经辐射场(NERF),以进行动态场景。我们的模型将6D坐标(3D空间位置,1D时间坐标和2D观看方向)映射到观看依赖性且随时间变化的发射辐射和体积密度。量渲染用于在指定的相机姿势和时间上渲染光真实的图像。为了提高物理相机的鲁棒性,我们提出了一个摄像机参数优化模块和一个时间框架插值模块,以促进跨时间的信息传播。我们对现实世界和合成数据集进行了实验以评估我们的系统,结果表明,我们的方法在定性和定量上优于替代解决方案。我们的代码和数据集可从https://yuenfuilau.github.io获得。
translated by 谷歌翻译
Photometric differences are widely used as supervision signals to train neural networks for estimating depth and camera pose from unlabeled monocular videos. However, this approach is detrimental for model optimization because occlusions and moving objects in a scene violate the underlying static scenario assumption. In addition, pixels in textureless regions or less discriminative pixels hinder model training. To solve these problems, in this paper, we deal with moving objects and occlusions utilizing the difference of the flow fields and depth structure generated by affine transformation and view synthesis, respectively. Secondly, we mitigate the effect of textureless regions on model optimization by measuring differences between features with more semantic and contextual information without adding networks. In addition, although the bidirectionality component is used in each sub-objective function, a pair of images are reasoned about only once, which helps reduce overhead. Extensive experiments and visual analysis demonstrate the effectiveness of the proposed method, which outperform existing state-of-the-art self-supervised methods under the same conditions and without introducing additional auxiliary information.
translated by 谷歌翻译
我们提出了一种称为基于DNN的基于DNN的框架,称为基于增强的相关匹配的视频帧插值网络,以支持4K的高分辨率,其具有大规模的运动和遮挡。考虑到根据分辨率的网络模型的可扩展性,所提出的方案采用经常性金字塔架构,该架构分享每个金字塔层之间的参数进行光学流量估计。在所提出的流程估计中,通过追踪具有最大相关性的位置来递归地改进光学流。基于前扭曲的相关匹配可以通过排除遮挡区域周围的错误扭曲特征来提高流量更新的准确性。基于最终双向流动,使用翘曲和混合网络合成任意时间位置的中间帧,通过细化网络进一步改善。实验结果表明,所提出的方案在4K视频数据和低分辨率基准数据集中占据了之前的工作,以及具有最小型号参数的客观和主观质量。
translated by 谷歌翻译
通过探索跨视图一致性,例如,光度计一致性和3D点云的一致性,在自我监督的单眼深度估计(SS-MDE)中取得了显着进步。但是,它们非常容易受到照明差异,遮挡,无纹理区域以及移动对象的影响,使它们不够强大,无法处理各种场景。为了应对这一挑战,我们在本文中研究了两种强大的跨视图一致性。首先,相邻帧之间的空间偏移场是通过通过可变形对齐来从其邻居重建参考框架来获得的,该比对通过深度特征对齐(DFA)损失来对齐时间深度特征。其次,计算每个参考框架及其附近框架的3D点云并转换为体素空间,在其中计算每个体素中的点密度并通过体素密度比对(VDA)损耗对齐。通过这种方式,我们利用了SS-MDE的深度特征空间和3D体素空间的时间连贯性,将“点对点”对齐范式转移到“区域到区域”。与光度一致性损失以及刚性点云对齐损失相比,由于深度特征的强大代表能力以及对上述挑战的素密度的高公差,提出的DFA和VDA损失更加强大。几个户外基准的实验结果表明,我们的方法的表现优于当前最新技术。广泛的消融研究和分析验证了拟议损失的有效性,尤其是在具有挑战性的场景中。代码和型号可在https://github.com/sunnyhelen/rcvc-depth上找到。
translated by 谷歌翻译
视频框架合成由插值和外推组成,是一种必不可少的视频处理技术,可应用于各种情况。但是,大多数现有方法无法处理小物体或大型运动,尤其是在高分辨率视频(例如4K视频)中。为了消除此类局限性,我们引入了基于流动帧合成的邻居对应匹配(NCM)算法。由于当前的帧在视频框架合成中不可用,因此NCM以当前框架的方式进行,以在每个像素的空间型社区中建立多尺度对应关系。基于NCM的强大运动表示能力,我们进一步建议在异质的粗到细节方案中估算框架合成的中间流。具体而言,粗尺度模块旨在利用邻居的对应关系来捕获大型运动,而细尺度模块在计算上更有效地加快了估计过程。两个模块都经过逐步训练,以消除培训数据集和现实世界视频之间的分辨率差距。实验结果表明,NCM在多个基准测试中实现了最先进的性能。此外,NCM可以应用于各种实践场景,例如视频压缩,以实现更好的性能。
translated by 谷歌翻译