Many real-world systems can be represented as graphs where the different entities are presented by nodes and their interactions by edges. An important task in studying large datasets is graph clustering. While there has been a lot of work on graph clustering using the connectivity between the nodes, many real-world networks also have node attributes. Clustering attributed graphs requires joint modeling of graph structure and node attributes. Recent work has focused on graph convolutional networks and graph convolutional filters to combine structural and content information. However, these methods are mostly limited to lowpass filtering and do not explicitly optimize the filters for the clustering task. In this paper, we introduce a graph signal processing based approach, where we design polynomial graph filters optimized for clustering. The proposed approach is formulated as a two-step iterative optimization problem where graph filters that are interpretable and optimal for the given data are learned while maximizing the separation between different clusters. The proposed approach is evaluated on attributed networks and compared to the state-of-the-art graph convolutional network approaches.
translated by 谷歌翻译
基于Web的交互可以经常由归因图表示,并且在这些图中的节点聚类最近受到了很多关注。多次努力已成功应用图形卷积网络(GCN),但由于GCNS已被显示出遭受过平滑问题的GCNS的精度一些限制。虽然其他方法(特别是基于拉普拉斯平滑的方法)已经报告了更好的准确性,但所有工作的基本限制都是缺乏可扩展性。本文通过将LAPLACIAN平滑与广义的PageRank相同,并将随机步行基于算法应用为可伸缩图滤波器来解决这一打开问题。这构成了我们可扩展的深度聚类算法RWSL的基础,其中通过自我监督的迷你批量培训机制,我们同时优化了一个深度神经网络,用于采样集群分配分配和AutoEncoder,用于群集导向的嵌入。使用6个现实世界数据集和6个聚类指标,我们表明RWSL实现了几个最近基线的结果。最值得注意的是,我们显示与所有其他深度聚类框架不同的RWSL可以继续以超过一百万个节点的图形扩展,即句柄。我们还演示了RWSL如何在仅使用单个GPU的18亿边缘的图表上执行节点聚类。
translated by 谷歌翻译
基于图形的多视图聚类比大多数非格拉普方法都取得了更好的性能。但是,在许多实际情况下,没有给出数据的图结构,或者初始图的质量很差。此外,现有方法在很大程度上忽略了表征复杂固有相互作用的高阶邻域信息。为了解决这些问题,我们引入了一种称为高阶多视图聚类(HMVC)的方法,以探索通用数据的拓扑结构信息。首先,将图形过滤应用于编码结构信息,该信息将单个框架中的属性图数据和非图形数据统一处理。其次,利用到无限顺序的固有关系来丰富学习的图。第三,为了探索各种视图的一致和互补信息,提出了一种自适应图融合机制来实现共识图。关于非图形和归因图数据的全面实验结果表明,我们方法在各种最新技术方面的出色性能,包括一些深度学习方法。
translated by 谷歌翻译
由于在建模相互依存系统中,由于其高效用,多层图已经在许多领域获得了大量的研究。然而,多层图的聚类,其旨在将图形节点划分为类别或社区,仍处于新生阶段。现有方法通常限于利用MultiView属性或多个网络,并忽略更复杂和更丰富的网络框架。为此,我们向多层图形聚类提出了一种名为Multidayer agal对比聚类网络(MGCCN)的多层图形聚类的通用和有效的AutoEncoder框架。 MGCCN由三个模块组成:(1)应用机制以更好地捕获节点与邻居之间的相关性以获得更好的节点嵌入。 (2)更好地探索不同网络中的一致信息,引入了对比融合策略。 (3)MGCCN采用自我监督的组件,可迭代地增强节点嵌入和聚类。对不同类型的真实图数据数据的广泛实验表明我们所提出的方法优于最先进的技术。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are deep learning models designed to process attributed graphs. GNNs can compute cluster assignments accounting both for the vertex features and for the graph topology. Existing GNNs for clustering are trained by optimizing an unsupervised minimum cut objective, which is approximated by a Spectral Clustering (SC) relaxation. SC offers a closed-form solution that, however, is not particularly useful for a GNN trained with gradient descent. Additionally, the SC relaxation is loose and yields overly smooth cluster assignments, which do not separate well the samples. We propose a GNN model that optimizes a tighter relaxation of the minimum cut based on graph total variation (GTV). Our model has two core components: i) a message-passing layer that minimizes the $\ell_1$ distance in the features of adjacent vertices, which is key to achieving sharp cluster transitions; ii) a loss function that minimizes the GTV in the cluster assignments while ensuring balanced partitions. By optimizing the proposed loss, our model can be self-trained to perform clustering. In addition, our clustering procedure can be used to implement graph pooling in deep GNN architectures for graph classification. Experiments show that our model outperforms other GNN-based approaches for clustering and graph pooling.
translated by 谷歌翻译
光谱群集中使用的目标函数通常由两个术语组成:i)一个术语最小化群集分配的局部二次变化,并且;ii)一个平衡聚类分区并有助于避免退化解决方案的术语。本文表明,配备合适消息传递层的图形神经网络可以通过仅优化平衡项来生成良好的集群分配。归因图数据集的结果显示了拟议方法在聚类性能和计算时间方面的有效性。
translated by 谷歌翻译
图形神经网络(GNN)已在许多图分析任务(例如节点分类和链接预测)上实现了最新结果。然而,事实证明,图形群集等图形上的重要无监督问题对GNN的进步具有更大的抵抗力。图群集的总体目标与GNN中的节点合并相同 - 这是否意味着GNN池方法在聚类图上做得很好?令人惊讶的是,答案是没有的 - 当前的GNN合并方法通常无法恢复群集结构,而在简单的基线(例如应用于学习的表示形式上的K-均值)良好工作的情况下。我们通过仔细设计一组实验来进一步研究,以研究图形结构和属性数据中的不同信噪比情景。为了解决这些方法在聚类中的性能不佳,我们引入了深层模块化网络(DMON),这是一种受群集质量模块化量度启发的无监督池方法,并显示了它如何解决现实世界图的挑战性聚类结构的恢复。同样,在现实世界中,我们表明DMON产生的高质量簇与地面真相标签密切相关,从而实现了最先进的结果,比不同指标的其他合并方法提高了40%以上。
translated by 谷歌翻译
图形卷积是一种最近可扩展的方法,用于通过在多个层上汇总本地节点信息来对属性图进行深度特征学习。这样的层仅考虑向前模型中节点邻居的属性信息,并且不将全球网络结构的知识纳入学习任务。特别是,模块化功能提供了有关网络社区结构的方便信息。在这项工作中,我们通过将网络的社区结构保存目标纳入图卷积模型中,调查了对学习表示的质量的影响。我们通过在输出层中的成本函数中的明确正规化项和通过辅助层计算的附加损失项中通过两种方式结合目标。我们报告了在图形卷积体系结构中保存术语的社区结构的效果。对两个归因的分布图网络进行的实验评估表明,社区保护目标的合并提高了稀疏标签制度中的半监督节点分类精度。
translated by 谷歌翻译
The core operation of current Graph Neural Networks (GNNs) is the aggregation enabled by the graph Laplacian or message passing, which filters the neighborhood information of nodes. Though effective for various tasks, in this paper, we show that they are potentially a problematic factor underlying all GNN models for learning on certain datasets, as they force the node representations similar, making the nodes gradually lose their identity and become indistinguishable. Hence, we augment the aggregation operations with their dual, i.e. diversification operators that make the node more distinct and preserve the identity. Such augmentation replaces the aggregation with a two-channel filtering process that, in theory, is beneficial for enriching the node representations. In practice, the proposed two-channel filters can be easily patched on existing GNN methods with diverse training strategies, including spectral and spatial (message passing) methods. In the experiments, we observe desired characteristics of the models and significant performance boost upon the baselines on 9 node classification tasks.
translated by 谷歌翻译
图形卷积网络(GCN)及其变体是为仅包含正链的无符号图设计的。许多现有的GCN来自位于(未签名)图的信号的光谱域分析,在每个卷积层中,它们对输入特征进行低通滤波,然后进行可学习的线性转换。它们扩展到具有正面和负面链接的签名图,引发了多个问题,包括计算不规则性和模棱两可的频率解释,从而使计算有效的低通滤波器的设计具有挑战性。在本文中,我们通过签名图的光谱分析来解决这些问题,并提出了两个不同的图形神经网络,一个人仅保留低频信息,并且还保留了高频信息。我们进一步引入了磁性签名的拉普拉斯式,并使用其特征成分进行定向签名图的光谱分析。我们在签名图上测试了节点分类的方法,并链接符号预测任务并实现最先进的性能。
translated by 谷歌翻译
超图允许使用多向高阶关系建模问题。然而,大多数现有超图的算法的计算成本可能严重取决于输入的超图尺寸。为了解决不断增加的计算挑战,可以通过积极聚合其顶点(节点)来预先处理给定的超图来促进图表粗化。然而,未经纳入启发式图粗化技术的最先进的超图分区(聚类)方法未得到优化,以保留超图的结构(全局)属性。在这项工作中,我们提出了一种有效的光谱超图粗化方案(HypersF),以保持超图的原始光谱(结构)特性。我们的方法利用了最近的强烈局部最大流量的聚类算法,用于检测最小化比例的超图形顶点集。为了进一步提高算法效率,我们通过利用与原始超图对应的二分形图的光谱聚类来提出分频和征服方案。我们从现实世界VLSI设计基准提取的各种超图的实验结果表明,与现有最先进的现有技术相比,所提出的超图粗略化算法可以显着提高超图和运行时效率的多线电导算法。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
在本文中,我们提出了一种新方法来检测具有归因顶点的无向图中的簇。目的是将不仅在结构连接性方面,而且在属性值方面相似的顶点分组。我们通过创建[6,38]中提出的其他顶点和边缘,将顶点之间的结构和属性相似。然后将增强图嵌入到与其拉普拉斯式相关的欧几里得空间中,在该空间中,应用了修改的K-均值算法以识别簇。修改后的k均值依赖于矢量距离度量,根据每个原始顶点,我们分配了合适的矢量值坐标集,这取决于结构连接性和属性相似性,因此每个原始图顶点都被认为是$ M+1的代表增强图的$顶点,如果$ m $是顶点属性的数量。为了定义坐标矢量,我们基于自适应AMG(代数多机)方法采用了我们最近提出的算法,该方法识别了嵌入欧几里得空间中的坐标方向,以代数平滑的矢量相对于我们的增强图Laplacian,从而扩展了laplacian,从而扩展了坐标。没有属性的图形的先前结果。我们通过与一些知名方法进行比较,分析了我们提出的聚类方法的有效性,这些方法可以免费获得软件实现,并与文献中报告的结果相比,在两种不同类型的广泛使用的合成图上以及在某些现实世界中的图形上。
translated by 谷歌翻译
图形神经网络(GNNS)通过考虑其内在的几何形状来扩展神经网络的成功到图形结构化数据。尽管根据图表学习基准的集合,已经对开发具有卓越性能的GNN模型进行了广泛的研究,但目前尚不清楚其探测给定模型的哪些方面。例如,他们在多大程度上测试模型利用图形结构与节点特征的能力?在这里,我们开发了一种原则性的方法来根据$ \ textit {敏感性配置文件} $进行基准测试数据集,该方法基于由于图形扰动的集合而导致的GNN性能变化了多少。我们的数据驱动分析提供了对GNN利用哪些基准测试数据特性的更深入的了解。因此,我们的分类法可以帮助选择和开发适当的图基准测试,并更好地评估未来的GNN方法。最后,我们在$ \ texttt {gtaxogym} $软件包中的方法和实现可扩展到多个图形预测任务类型和未来数据集。
translated by 谷歌翻译
图表比较涉及识别图之间的相似性和异化。主要障碍是图形的未知对准,以及缺乏准确和廉价的比较度量。在这项工作中,我们引入过滤器图距离。它是一种基于最佳的传输距离,其通过滤波图信号的概率分布驱动图表比较。这产生了高度灵活的距离,能够在观察到的图表中优先考虑不同的光谱信息,为比较度量提供广泛的选择。我们通过计算图表置换来解决图表对齐问题,该置换最小化了我们的新滤波器距离,这隐含地解决了曲线图比较问题。然后,我们提出了一种新的近似成本函数,这些函数避免了曲线图比较固有的许多计算困难,并且允许利用镜面梯度下降等快速算法,而不会严重牺牲性能。我们终于提出了一种衍生自镜面梯度下降的随机版本的新型算法,其适应对准问题的非凸性,在性能准确性和速度之间提供良好的折衷。图表对准和分类的实验表明,通过滤波图距离所获得的灵活性可以对性能产生显着影响,而近似成本提供的速度差异使得适用于实际设置的框架。
translated by 谷歌翻译
Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing, along with a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas. We then summarize recent advances in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning.
translated by 谷歌翻译
Graph convolution is the core of most Graph Neural Networks (GNNs) and usually approximated by message passing between direct (one-hop) neighbors. In this work, we remove the restriction of using only the direct neighbors by introducing a powerful, yet spatially localized graph convolution: Graph diffusion convolution (GDC). GDC leverages generalized graph diffusion, examples of which are the heat kernel and personalized PageRank. It alleviates the problem of noisy and often arbitrarily defined edges in real graphs. We show that GDC is closely related to spectral-based models and thus combines the strengths of both spatial (message passing) and spectral methods. We demonstrate that replacing message passing with graph diffusion convolution consistently leads to significant performance improvements across a wide range of models on both supervised and unsupervised tasks and a variety of datasets. Furthermore, GDC is not limited to GNNs but can trivially be combined with any graph-based model or algorithm (e.g. spectral clustering) without requiring any changes to the latter or affecting its computational complexity. Our implementation is available online. 1
translated by 谷歌翻译
基于图形的多视图聚类,旨在跨多种视图获取数据分区,近年来接受了相当大的关注。虽然已经为基于图形的多视图群集进行了巨大努力,但它对各种视图融合特征仍然是一个挑战,以学习聚类的常见表示。在本文中,我们提出了一种新的一致多曲线图嵌入聚类框架(CMGEC)。具体地,设计了一种多图自动编码器(M-GAE),用于使用多图注意融合编码器灵活地编码多视图数据的互补信息。为了引导所学过的公共表示维护每个视图中相邻特征的相似性,引入了多视图相互信息最大化模块(MMIM)。此外,设计了一个图形融合网络(GFN),以探讨来自不同视图的图表之间的关系,并提供M-GAE所需的常见共识图。通过联合训练这些模型,可以获得共同的潜在表示,其从多个视图中编码更多互补信息,并更全面地描绘数据。三种类型的多视图数据集的实验表明CMGEC优于最先进的聚类方法。
translated by 谷歌翻译
Graph AutoCododers(GAE)和变分图自动编码器(VGAE)作为链接预测的强大方法出现。他们的表现对社区探测问题的印象不那么令人印象深刻,根据最近和同意的实验评估,它们的表现通常超过了诸如louvain方法之类的简单替代方案。目前尚不清楚可以通过GAE和VGAE改善社区检测的程度,尤其是在没有节点功能的情况下。此外,不确定是否可以在链接预测上同时保留良好的性能。在本文中,我们表明,可以高精度地共同解决这两个任务。为此,我们介绍和理论上研究了一个社区保留的消息传递方案,通过在计算嵌入空间时考虑初始图形结构和基于模块化的先验社区来掺杂我们的GAE和VGAE编码器。我们还提出了新颖的培训和优化策略,包括引入一个模块化的正规器,以补充联合链路预测和社区检测的现有重建损失。我们通过对各种现实世界图的深入实验验证,证明了方法的经验有效性,称为模块化感知的GAE和VGAE。
translated by 谷歌翻译
随着从现实世界所收集的图形数据仅仅是无噪声,图形的实际表示应该是强大的噪声。现有的研究通常侧重于特征平滑,但留下几何结构不受影响。此外,大多数工作需要L2-Norm,追求全局平滑度,这限制了图形神经网络的表现。本文根据特征和结构噪声裁定图表数据的常规程序,其中目标函数用乘法器(ADMM)的交替方向方法有效地解决。该方案允许采用多个层,而无需过平滑的关注,并且保证对最佳解决方案的收敛性。实证研究证明,即使在重大污染的情况下,我们的模型也与流行的图表卷积相比具有明显更好的性能。
translated by 谷歌翻译