基于图形的多视图聚类比大多数非格拉普方法都取得了更好的性能。但是,在许多实际情况下,没有给出数据的图结构,或者初始图的质量很差。此外,现有方法在很大程度上忽略了表征复杂固有相互作用的高阶邻域信息。为了解决这些问题,我们引入了一种称为高阶多视图聚类(HMVC)的方法,以探索通用数据的拓扑结构信息。首先,将图形过滤应用于编码结构信息,该信息将单个框架中的属性图数据和非图形数据统一处理。其次,利用到无限顺序的固有关系来丰富学习的图。第三,为了探索各种视图的一致和互补信息,提出了一种自适应图融合机制来实现共识图。关于非图形和归因图数据的全面实验结果表明,我们方法在各种最新技术方面的出色性能,包括一些深度学习方法。
translated by 谷歌翻译
由于在建模相互依存系统中,由于其高效用,多层图已经在许多领域获得了大量的研究。然而,多层图的聚类,其旨在将图形节点划分为类别或社区,仍处于新生阶段。现有方法通常限于利用MultiView属性或多个网络,并忽略更复杂和更丰富的网络框架。为此,我们向多层图形聚类提出了一种名为Multidayer agal对比聚类网络(MGCCN)的多层图形聚类的通用和有效的AutoEncoder框架。 MGCCN由三个模块组成:(1)应用机制以更好地捕获节点与邻居之间的相关性以获得更好的节点嵌入。 (2)更好地探索不同网络中的一致信息,引入了对比融合策略。 (3)MGCCN采用自我监督的组件,可迭代地增强节点嵌入和聚类。对不同类型的真实图数据数据的广泛实验表明我们所提出的方法优于最先进的技术。
translated by 谷歌翻译
Multi-view attributed graph clustering is an important approach to partition multi-view data based on the attribute feature and adjacent matrices from different views. Some attempts have been made in utilizing Graph Neural Network (GNN), which have achieved promising clustering performance. Despite this, few of them pay attention to the inherent specific information embedded in multiple views. Meanwhile, they are incapable of recovering the latent high-level representation from the low-level ones, greatly limiting the downstream clustering performance. To fill these gaps, a novel Dual Information enhanced multi-view Attributed Graph Clustering (DIAGC) method is proposed in this paper. Specifically, the proposed method introduces the Specific Information Reconstruction (SIR) module to disentangle the explorations of the consensus and specific information from multiple views, which enables GCN to capture the more essential low-level representations. Besides, the Mutual Information Maximization (MIM) module maximizes the agreement between the latent high-level representation and low-level ones, and enables the high-level representation to satisfy the desired clustering structure with the help of the Self-supervised Clustering (SC) module. Extensive experiments on several real-world benchmarks demonstrate the effectiveness of the proposed DIAGC method compared with the state-of-the-art baselines.
translated by 谷歌翻译
尽管以前基于图的多视图聚类算法已经取得了重大进展,但其中大多数仍面临三个限制。首先,他们经常遭受高计算复杂性的困扰,这限制了他们在大规模场景中的应用。其次,他们通常在单视图级别或视图传感级别上执行图形学习,但经常忽略单视图和共识图的联合学习的可能性。第三,其中许多人依靠$ k $ - 表示光谱嵌入的离散化,这些嵌入缺乏直接使用离散群集结构直接学习图形的能力。鉴于此,本文通过统一和离散的两部分图(UDBGL)提出了一种有效的多视图聚类方法。具体而言,基于锚的子空间学习被合并为从多个视图中学习特定的二分化图,并利用双方图融合来学习具有自适应重量学习的视图 - 谐镜双分歧图。此外,施加Laplacian等级约束以确保融合的两分图具有离散的群集结构(具有特定数量的连接组件)。通过同时制定特定视图的两分图学习,视图 - 共表的两分图学习以及离散的群集结构学习到统一的目标函数中,然后设计有效的最小化算法来解决此优化问题,并直接实现离散的聚类解决方案解决方案解决方案解决方案解决方案。不需要其他分区,这特别是数据大小的线性时间复杂性。各种多视图数据集的实验证明了我们的UDBGL方法的鲁棒性和效率。
translated by 谷歌翻译
多视图子空间聚类传统上专注于集成异构特征描述以捕获更高维度信息。一种流行的策略是从不同视图生成常见的子空间,然后应用基于图形的方法来处理群集。但是,这些方法的性能仍然受到两个限制,即多视图融合模式以及融合过程与聚类任务之间的连接。为了解决这些问题,我们通过细粒度图形学习提出了一种新的多视图子空间聚类框架,可以在不同视图之间讲述本地结构之间的一致性,并比以前的重量规则更精细地集成所有视图。与文献中的其他模型不同,引入了点级图正规化和频谱聚类的重新介绍,以执行图形融合并将共享集群结构一起学习在一起。在五个真实数据集上进行了广泛的实验,表明该框架对SOTA算法具有可比性。
translated by 谷歌翻译
基于图形的多视图聚类,旨在跨多种视图获取数据分区,近年来接受了相当大的关注。虽然已经为基于图形的多视图群集进行了巨大努力,但它对各种视图融合特征仍然是一个挑战,以学习聚类的常见表示。在本文中,我们提出了一种新的一致多曲线图嵌入聚类框架(CMGEC)。具体地,设计了一种多图自动编码器(M-GAE),用于使用多图注意融合编码器灵活地编码多视图数据的互补信息。为了引导所学过的公共表示维护每个视图中相邻特征的相似性,引入了多视图相互信息最大化模块(MMIM)。此外,设计了一个图形融合网络(GFN),以探讨来自不同视图的图表之间的关系,并提供M-GAE所需的常见共识图。通过联合训练这些模型,可以获得共同的潜在表示,其从多个视图中编码更多互补信息,并更全面地描绘数据。三种类型的多视图数据集的实验表明CMGEC优于最先进的聚类方法。
translated by 谷歌翻译
尽管图表学习(GRL)取得了重大进展,但要以足够的方式提取和嵌入丰富的拓扑结构和特征信息仍然是一个挑战。大多数现有方法都集中在本地结构上,并且无法完全融合全球拓扑结构。为此,我们提出了一种新颖的结构保留图表学习(SPGRL)方法,以完全捕获图的结构信息。具体而言,为了减少原始图的不确定性和错误信息,我们通过k-nearest邻居方法构建了特征图作为互补视图。该特征图可用于对比节点级别以捕获本地关系。此外,我们通过最大化整个图形和特征嵌入的相互信息(MI)来保留全局拓扑结构信息,从理论上讲,该信息可以简化为交换功能的特征嵌入和原始图以重建本身。广泛的实验表明,我们的方法在半监督节点分类任务上具有相当出色的性能,并且在图形结构或节点特征上噪声扰动下的鲁棒性出色。
translated by 谷歌翻译
归因图群集是图形分析字段中最重要的任务之一,其目的是将具有相似表示的节点分组到没有手动指导的情况下。基于图形对比度学习的最新研究在处理图形结构数据方面取得了令人印象深刻的结果。但是,现有的基于图形学习的方法1)不要直接解决聚类任务,因为表示和聚类过程是分开的; 2)过多地取决于图数据扩展,这极大地限制了对比度学习的能力; 3)忽略子空间聚类的对比度消息。为了适应上述问题,我们提出了一个通用框架,称为双重对比归因于图形聚类网络(DCAGC)。在DCAGC中,通过利用邻里对比模块,将最大化邻居节点的相似性,并提高节点表示的质量。同时,对比度自我表达模块是通过在自我表达层重建之前和之后最小化节点表示形式来构建的,以获得用于光谱群集的区分性自我表达矩阵。 DCAGC的所有模块均在统一框架中训练和优化,因此学习的节点表示包含面向群集的消息。与16种最先进的聚类方法相比,四个属性图数据集的大量实验结果显示了DCAGC的优势。本文的代码可在https://github.com/wangtong627/dual-contrastive-attributed-graph-cluster-clustering-network上获得。
translated by 谷歌翻译
Multi-view graph clustering (MGC) methods are increasingly being studied due to the explosion of multi-view data with graph structural information. The critical point of MGC is to better utilize the view-specific and view-common information in features and graphs of multiple views. However, existing works have an inherent limitation that they are unable to concurrently utilize the consensus graph information across multiple graphs and the view-specific feature information. To address this issue, we propose Variational Graph Generator for Multi-View Graph Clustering (VGMGC). Specifically, a novel variational graph generator is proposed to extract common information among multiple graphs. This generator infers a reliable variational consensus graph based on a priori assumption over multiple graphs. Then a simple yet effective graph encoder in conjunction with the multi-view clustering objective is presented to learn the desired graph embeddings for clustering, which embeds the inferred view-common graph and view-specific graphs together with features. Finally, theoretical results illustrate the rationality of VGMGC by analyzing the uncertainty of the inferred consensus graph with information bottleneck principle. Extensive experiments demonstrate the superior performance of our VGMGC over SOTAs.
translated by 谷歌翻译
旨在解决不完整的多视图数据中缺少部分视图的聚类问题的不完整的多视图聚类,近年来受到了越来越多的关注。尽管已经开发了许多方法,但大多数方法要么无法灵活地处理不完整的多视图数据,因此使用任意丢失的视图,或者不考虑视图之间信息失衡的负面因素。此外,某些方法并未完全探索所有不完整视图的局部结构。为了解决这些问题,本文提出了一种简单但有效的方法,称为局部稀疏不完整的多视图聚类(LSIMVC)。与现有方法不同,LSIMVC打算通过优化一个稀疏的正则化和新颖的图形嵌入式多视图矩阵分数模型来从不完整的多视图数据中学习稀疏和结构化的潜在表示。具体而言,在基于矩阵分解的这种新型模型中,引入了基于L1规范的稀疏约束,以获得稀疏的低维单个表示和稀疏共识表示。此外,引入了新的本地图嵌入项以学习结构化共识表示。与现有作品不同,我们的本地图嵌入术语汇总了图形嵌入任务和共识表示任务中的简洁术语。此外,为了减少多视图学习的不平衡因素,将自适应加权学习方案引入LSIMVC。最后,给出了有效的优化策略来解决我们提出的模型的优化问题。在六个不完整的多视图数据库上执行的全面实验结果证明,我们的LSIMVC的性能优于最新的IMC方法。该代码可在https://github.com/justsmart/lsimvc中找到。
translated by 谷歌翻译
基于Web的交互可以经常由归因图表示,并且在这些图中的节点聚类最近受到了很多关注。多次努力已成功应用图形卷积网络(GCN),但由于GCNS已被显示出遭受过平滑问题的GCNS的精度一些限制。虽然其他方法(特别是基于拉普拉斯平滑的方法)已经报告了更好的准确性,但所有工作的基本限制都是缺乏可扩展性。本文通过将LAPLACIAN平滑与广义的PageRank相同,并将随机步行基于算法应用为可伸缩图滤波器来解决这一打开问题。这构成了我们可扩展的深度聚类算法RWSL的基础,其中通过自我监督的迷你批量培训机制,我们同时优化了一个深度神经网络,用于采样集群分配分配和AutoEncoder,用于群集导向的嵌入。使用6个现实世界数据集和6个聚类指标,我们表明RWSL实现了几个最近基线的结果。最值得注意的是,我们显示与所有其他深度聚类框架不同的RWSL可以继续以超过一百万个节点的图形扩展,即句柄。我们还演示了RWSL如何在仅使用单个GPU的18亿边缘的图表上执行节点聚类。
translated by 谷歌翻译
随着对比学习的兴起,无人监督的图形表示学习最近一直蓬勃发展,甚至超过了一些机器学习任务中的监督对应物。图表表示的大多数对比模型学习侧重于最大化本地和全局嵌入之间的互信息,或主要取决于节点级别的对比嵌入。然而,它们仍然不足以全面探索网络拓扑的本地和全球视图。虽然前者认为本地全球关系,但其粗略的全球信息导致本地和全球观点之间的思考。后者注重节点级别对齐,以便全局视图的作用出现不起眼。为避免落入这两个极端情况,我们通过对比群集分配来提出一种新颖的无监督图形表示模型,称为GCCA。通过组合聚类算法和对比学习,它有动力综合利用本地和全球信息。这不仅促进了对比效果,而且还提供了更高质量的图形信息。同时,GCCA进一步挖掘群集级信息,这使得它能够了解除了图形拓扑之外的节点之间的难以捉摸的关联。具体地,我们首先使用不同的图形增强策略生成两个增强的图形,然后使用聚类算法分别获取其群集分配和原型。所提出的GCCA进一步强制不同增强图中的相同节点来通过最小化交叉熵损失来互相识别它们的群集分配。为了展示其有效性,我们将在三个不同的下游任务中与最先进的模型进行比较。实验结果表明,GCCA在大多数任务中具有强大的竞争力。
translated by 谷歌翻译
Multi-view data containing complementary and consensus information can facilitate representation learning by exploiting the intact integration of multi-view features. Because most objects in real world often have underlying connections, organizing multi-view data as heterogeneous graphs is beneficial to extracting latent information among different objects. Due to the powerful capability to gather information of neighborhood nodes, in this paper, we apply Graph Convolutional Network (GCN) to cope with heterogeneous-graph data originating from multi-view data, which is still under-explored in the field of GCN. In order to improve the quality of network topology and alleviate the interference of noises yielded by graph fusion, some methods undertake sorting operations before the graph convolution procedure. These GCN-based methods generally sort and select the most confident neighborhood nodes for each vertex, such as picking the top-k nodes according to pre-defined confidence values. Nonetheless, this is problematic due to the non-differentiable sorting operators and inflexible graph embedding learning, which may result in blocked gradient computations and undesired performance. To cope with these issues, we propose a joint framework dubbed Multi-view Graph Convolutional Network with Differentiable Node Selection (MGCN-DNS), which is constituted of an adaptive graph fusion layer, a graph learning module and a differentiable node selection schema. MGCN-DNS accepts multi-channel graph-structural data as inputs and aims to learn more robust graph fusion through a differentiable neural network. The effectiveness of the proposed method is verified by rigorous comparisons with considerable state-of-the-art approaches in terms of multi-view semi-supervised classification tasks.
translated by 谷歌翻译
基于图形的群集在群集任务中扮演着重要作用。作为图形卷积网络(GCN),图形类型数据上的神经网络的变体已经实现了令人印象深刻的性能,发现GCN是否可用于在非图形数据上增加基于图形的聚类方法,即,一般数据。但是,鉴于$ N $示例,基于图形的聚类方法通常需要至少$ O(n ^ 2)$时间来构建图形,图表卷积需要密集图和$ uyn $ o(n ^ 2)$。 o(| \ mathcal {e} |)$ for稀疏的$ | \ mathcal {e} | $边。换句话说,基于图形的聚类和GCN患有严重的低效率问题。为了解决这个问题,进一步雇用GCN促进基于图形的聚类的能力,我们提出了一种新的聚类方法,奇迹。由于常规群集方案中未提供图形结构,首先通过引入生成图模型来展示如何将非图形数据集转换为图形,该模型用于构建GCN。从原始数据生成锚来构建二分的图形,使得图表卷积的计算复杂度从$ O(n ^ 2)$和$ o(| \ mathcal {e} |)$到$ o(n) $。群集的后续步骤可以轻松设计为$ O(n)$操作。有趣的是,锚天然导致暹罗的GCN架构。由锚构造的二分图是动态更新的,以利用数据后面的高级信息。最终,我们理论上证明简单的更新将导致退化,因此设计了特定的策略。
translated by 谷歌翻译
多视图无监督的特征选择(MUF)已被证明是一种有效的技术,可降低多视图未标记数据的维度。现有方法假定所有视图都已完成。但是,多视图数据通常不完整,即,某些视图中显示了一部分实例,但并非所有视图。此外,学习完整的相似性图,作为现有MUFS方法中重要的有前途的技术,由于缺少的观点而无法实现。在本文中,我们提出了一个基于互补的和共识学习的不完整的多视图无监督的特征选择方法(C $^{2} $ IMUFS),以解决上述问题。具体而言,c $^{2} $ imufs将功能选择集成到扩展的加权非负矩阵分解模型中,配备了自适应学习视图和稀疏的$ \ ell_ {2,p} $ - norm-norm,它可以提供更好的提供适应性和灵活性。通过从不同视图得出的多个相似性矩阵的稀疏线性组合,介绍了互补学习引导的相似性矩阵重建模型,以在每个视图中获得完整的相似性图。此外,c $^{2} $ imufs学习了跨不同视图的共识聚类指示器矩阵,并将其嵌入光谱图术语中以保留本地几何结构。现实世界数据集的全面实验结果证明了与最新方法相比,C $^{2} $ IMUF的有效性。
translated by 谷歌翻译
Clustering is a fundamental problem in network analysis that finds closely connected groups of nodes and separates them from other nodes in the graph, while link prediction is to predict whether two nodes in a network are likely to have a link. The definition of both naturally determines that clustering must play a positive role in obtaining accurate link prediction tasks. Yet researchers have long ignored or used inappropriate ways to undermine this positive relationship. In this article, We construct a simple but efficient clustering-driven link prediction framework(ClusterLP), with the goal of directly exploiting the cluster structures to obtain connections between nodes as accurately as possible in both undirected graphs and directed graphs. Specifically, we propose that it is easier to establish links between nodes with similar representation vectors and cluster tendencies in undirected graphs, while nodes in a directed graphs can more easily point to nodes similar to their representation vectors and have greater influence in their own cluster. We customized the implementation of ClusterLP for undirected and directed graphs, respectively, and the experimental results using multiple real-world networks on the link prediction task showed that our models is highly competitive with existing baseline models. The code implementation of ClusterLP and baselines we use are available at https://github.com/ZINUX1998/ClusterLP.
translated by 谷歌翻译
随着数据采集技术的发展,多视图学习已成为一个热门话题。一些多视图学习方法假设多视图数据已经完成,这意味着所有实例都存在,但这太理想了。某些用于传递不完整多视图数据的基于张量的方法已经出现并取得了更好的结果。但是,仍然存在一些问题,例如使用传统的张量规范,这使计算高且无法处理样本外。为了解决这两个问题,我们提出了一种新的不完整的多视图学习方法。定义了一个新的张量规范来实现图形张量数据恢复。然后将恢复的图定于样品的一致的低维表示。此外,自适应权重配备了每种视图,以调整不同视图的重要性。与现有方法相比,我们的方法也不仅仅探讨视图之间的一致性,但也通过使用学习的投影矩阵获得了新样本的低维表示。基于不精确的增强Lagrange乘数(ALM)方法的有效算法旨在解决模型,并证明了收敛性。四个数据集的实验结果显示了我们方法的有效性。
translated by 谷歌翻译
作为图表上链路预测的自然扩展,超链接预测的目的是推断超图中缺失的超链接,其中超链接可以连接两个以上的节点。超链接预测在从化学反应网络,社交通信网络到蛋白质 - 蛋白质相互作用网络的广泛系统中具有应用。在本文中,我们提供了有关超链接预测的系统和全面调查。我们提出了一种新的分类法,将现有的超链接预测方法分类为四类:基于相似性的基于概率,基于矩阵优化和基于深度学习的方法。为了比较来自不同类别的方法的性能,我们使用每个类别的代表性方法对各种超图应用进行了基准研究。值得注意的是,基于深度学习的方法比超链接预测中的其他方法占了上风。
translated by 谷歌翻译
Contrastive learning methods based on InfoNCE loss are popular in node representation learning tasks on graph-structured data. However, its reliance on data augmentation and its quadratic computational complexity might lead to inconsistency and inefficiency problems. To mitigate these limitations, in this paper, we introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL in short). Local-GCL consists of two key designs: 1) We fabricate the positive examples for each node directly using its first-order neighbors, which frees our method from the reliance on carefully-designed graph augmentations; 2) To improve the efficiency of contrastive learning on graphs, we devise a kernelized contrastive loss, which could be approximately computed in linear time and space complexity with respect to the graph size. We provide theoretical analysis to justify the effectiveness and rationality of the proposed methods. Experiments on various datasets with different scales and properties demonstrate that in spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
translated by 谷歌翻译
多视图聚类已进行了广泛的研究,以利用多源信息来提高聚类性能。通常,大多数现有作品通常通过某些相似性/距离指标(例如欧几里得距离)或学习的表示形式来计算N * n亲和力图,并探索跨视图的成对相关性。但是不幸的是,通常需要二次甚至立方复杂性,这使得在聚集largescale数据集方面遇到了困难。最近,通过选择具有K-均值的视图锚表演或通过对原始观测值进行直接矩阵分解来捕获多个视图中的数据分布。尽管取得了巨大的成功,但很少有人考虑了视图不足问题,因此隐含地认为,每个单独的观点都足以恢复群集结构。此外,无法同时发现潜在积分空间以及来自多个视图的共享群集结构。鉴于这一点,我们为快速多视图聚类(AIMC)提出了一个具有几乎线性复杂性的快速多视图聚类(AIMC)。具体而言,视图生成模型旨在重建来自潜在积分空间的视图观测值,并具有不同的适应性贡献。同时,具有正交性约束和群集分区的质心表示无缝构造以近似潜在的积分空间。开发了一种替代最小化算法来解决优化问题,事实证明,该问题具有线性时间复杂性W.R.T.样本量。与最新方法相比,在几个Realworld数据集上进行的广泛实验证实了所提出的AIMC方法的优越性。
translated by 谷歌翻译