We introduce OPEND, a benchmark for learning how to use a hand to open cabinet doors or drawers in a photo-realistic and physics-reliable simulation environment driven by language instruction. To solve the task, we propose a multi-step planner composed of a deep neural network and rule-base controllers. The network is utilized to capture spatial relationships from images and understand semantic meaning from language instructions. Controllers efficiently execute the plan based on the spatial and semantic understanding. We evaluate our system by measuring its zero-shot performance in test data set. Experimental results demonstrate the effectiveness of decision planning by our multi-step planner for different hands, while suggesting that there is significant room for developing better models to address the challenge brought by language understanding, spatial reasoning, and long-term manipulation. We will release OPEND and host challenges to promote future research in this area.
translated by 谷歌翻译
从语言灵活性和组成性中受益,人类自然打算使用语言来指挥体现的代理,以进行复杂的任务,例如导航和对象操纵。在这项工作中,我们旨在填补最后一英里的体现代理的空白 - 通过遵循人类的指导,例如,“将红杯子移到盒子旁边,同时将其保持直立。”为此,我们介绍了一个自动操纵求解器(AMSolver)模拟器,并基于IT构建视觉和语言操纵基准(VLMBENCH),其中包含有关机器人操纵任务的各种语言说明。具体而言,创建基于模块化规则的任务模板是为了自动生成具有语言指令的机器人演示,包括各种对象形状和外观,动作类型和运动约束。我们还开发了一个基于关键点的模型6D-Cliport,以处理多视图观察和语言输入,并输出一个6个自由度(DOF)动作的顺序。我们希望新的模拟器和基准将促进对语言引导机器人操纵的未来研究。
translated by 谷歌翻译
我们介绍了栖息地2.0(H2.0),这是一个模拟平台,用于培训交互式3D环境和复杂物理的场景中的虚拟机器人。我们为体现的AI堆栈 - 数据,仿真和基准任务做出了全面的贡献。具体来说,我们提出:(i)复制:一个由艺术家的,带注释的,可重新配置的3D公寓(匹配真实空间)与铰接对象(例如可以打开/关闭的橱柜和抽屉); (ii)H2.0:一个高性能物理学的3D模拟器,其速度超过8-GPU节点上的每秒25,000个模拟步骤(实时850x实时),代表先前工作的100倍加速;和(iii)家庭助理基准(HAB):一套辅助机器人(整理房屋,准备杂货,设置餐桌)的一套常见任务,以测试一系列移动操作功能。这些大规模的工程贡献使我们能够系统地比较长期结构化任务中的大规模加固学习(RL)和经典的感官平面操作(SPA)管道,并重点是对新对象,容器和布局的概括。 。我们发现(1)与层次结构相比,(1)平面RL政策在HAB上挣扎; (2)具有独立技能的层次结构遭受“交接问题”的困扰,(3)水疗管道比RL政策更脆。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
与人类在环境中共存的通用机器人必须学会将人类语言与其在一系列日常任务中有用的看法和行动联系起来。此外,他们需要获取各种曲目的一般专用技能,允许通过遵循无约束语言指示来组成长地平任务。在本文中,我们呈现了凯文(从语言和愿景撰写的行动),是一个露天模拟基准,用于学习Long-Horizo​​ n语言条件的任务。我们的目的是使可以开发能够通过船上传感器解决许多机器人操纵任务的代理商,并且仅通过人类语言指定。 Calvin任务在序列长度,动作空间和语言方面更复杂,而不是现有的视觉和语言任务数据集,并支持灵活的传感器套件规范。我们评估零拍摄的代理商以新颖的语言指示以及新的环境和对象。我们表明,基于多语境模仿学习的基线模型在凯文中表现不佳,表明有很大的空间,用于开发创新代理,了解学习将人类语言与这款基准相关的世界模型。
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
最近的作品表明,如何将大语言模型(LLM)的推理能力应用于自然语言处理以外的领域,例如机器人的计划和互动。这些具体的问题要求代理商了解世界上许多语义方面:可用技能的曲目,这些技能如何影响世界以及对世界的变化如何映射回该语言。在体现环境中规划的LLMS不仅需要考虑要做什么技能,还需要考虑如何以及何时进行操作 - 答案随着时间的推移而变化,以响应代理商自己的选择。在这项工作中,我们调查了在这种体现的环境中使用的LLM在多大程度上可以推论通过自然语言提供的反馈来源,而无需任何其他培训。我们建议,通过利用环境反馈,LLM能够形成内部独白,使他们能够在机器人控制方案中进行更丰富的处理和计划。我们研究了各种反馈来源,例如成功检测,场景描述和人类互动。我们发现,闭环语言反馈显着改善了三个领域的高级指导完成,包括模拟和真实的桌面顶部重新排列任务以及现实世界中厨房环境中的长途移动操作任务。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
最近在体现AI中的研究已经通过使用模拟环境来开发和培训机器人学习方法。然而,使用模拟已经引起了只需要机器人模拟器可以模拟的任务:运动和物理接触的任务。我们呈现IGIBSON 2.0,一个开源仿真环境,通过三个关键创新支持模拟更多样化的家庭任务。首先,IGIBSON 2.0支持对象状态,包括温度,湿度水平,清洁度和切割和切片状态,以涵盖更广泛的任务。其次,IGIBSON 2.0实现了一组谓词逻辑函数,该逻辑函数将模拟器状态映射到烹饪或浸泡等逻辑状态。另外,给定逻辑状态,IGIBSON 2.0可以对满足它的有效物理状态进行示例。此功能可以以最少的努力从用户生成潜在的无限实例。采样机制允许我们的场景在语义有意义的位置中的小对象更密集地填充。第三,IGIBSON 2.0包括虚拟现实(VR)界面,以将人类浸入其场景以收集示威操作。因此,我们可以从这些新型任务中收集人类的示威活动,并使用它们进行模仿学习。我们评估了IGIBSON 2.0的新功能,以实现新的任务的机器人学习,希望能够展示这一新模拟器的潜力来支持体现AI的新研究。 IGIBSON 2.0及其新数据集可在http://svl.stanford.edu/igibson/上公开提供。
translated by 谷歌翻译
基于学习的培训方法的方法通常需要大量包含现实布局的高质量场景并支持有意义的互动。然而,用于体现AI(EAI)挑战的当前模拟器仅提供具有有限数量的布局的模拟室内场景。本文呈现出发光,第一研究框架采用最先进的室内场景综合算法,以在体现AI挑战的情况下生成大规模模拟场景。此外,我们通过支持复杂的家庭任务的能力自动和定量地评估生成的室内场景的质量。发光结合了一种新颖的场景生成算法(受限的随机现场生成(CSSG)),实现了具有人类设计的场景的竞争性能。在发光,EAI任务执行器,任务指令生成模块和视频呈现工具包中可以集体为实现的AI代理商的培训和评估集体为新场景产生大量多模式数据集。广泛的实验结果表明了发光产生的数据的有效性,使对泛化和鲁棒性的体现特性进行全面评估。
translated by 谷歌翻译
在本文中,我们研究了可以从原始图像中学习低级技能的曲目的问题,这些曲目可以测序以完成长效的视觉运动任务。强化学习(RL)是一种自主获取短疗法技能的有前途的方法。但是,RL算法的重点很大程度上是这些个人技能的成功,而不是学习和扎根大量的技能曲目,这些技能可以对这些技能进行测序,这些技能可以对完成扩展的多阶段任务进行测序。后者需要稳健性和持久性,因为技能的错误会随着时间的流逝而复杂,并且可能要求机器人在其曲目中具有许多原始技能,而不仅仅是一个。为此,我们介绍了Ember,Ember是一种基于模型的RL方法,用于学习原始技能,适合完成长途视觉运动任务。 Ember使用学识渊博的模型,评论家和成功分类器学习和计划,成功分类器既可以作为RL的奖励功能,又是一种基础机制,可连续检测机器人在失败或扰动下是否应重试技能。此外,学到的模型是任务不合时宜的,并使用来自所有技能的数据进行了培训,从而使机器人能够有效地学习许多不同的原语。这些视觉运动原始技能及其相关的前后条件可以直接与现成的符号计划者结合在一起,以完成长途任务。在Franka Emika机器人部门上,我们发现Ember使机器人能够以85%的成功率完成三个长马视觉运动任务,例如组织办公桌,文件柜和抽屉,需要排序多达12个技能,这些技能最多需要12个技能,涉及14个独特的学识渊博,并要求对新物体进行概括。
translated by 谷歌翻译
对于移动机器人而言,与铰接式对象的交互是一项具有挑战性但重要的任务。为了应对这一挑战,我们提出了一条新型的闭环控制管道,该管道将负担能力估计的操纵先验与基于采样的全身控制相结合。我们介绍了完全反映了代理的能力和体现的代理意识提供的概念,我们表明它们的表现优于其最先进的对应物,这些对应物仅以最终效果的几何形状为条件。此外,发现闭环负担推论使代理可以将任务分为多个非连续运动,并从失败和意外状态中恢复。最后,管道能够执行长途移动操作任务,即在现实世界中开放和关闭烤箱,成功率很高(开放:71%,关闭:72%)。
translated by 谷歌翻译
Reliably planning fingertip grasps for multi-fingered hands lies as a key challenge for many tasks including tool use, insertion, and dexterous in-hand manipulation. This task becomes even more difficult when the robot lacks an accurate model of the object to be grasped. Tactile sensing offers a promising approach to account for uncertainties in object shape. However, current robotic hands tend to lack full tactile coverage. As such, a problem arises of how to plan and execute grasps for multi-fingered hands such that contact is made with the area covered by the tactile sensors. To address this issue, we propose an approach to grasp planning that explicitly reasons about where the fingertips should contact the estimated object surface while maximizing the probability of grasp success. Key to our method's success is the use of visual surface estimation for initial planning to encode the contact constraint. The robot then executes this plan using a tactile-feedback controller that enables the robot to adapt to online estimates of the object's surface to correct for errors in the initial plan. Importantly, the robot never explicitly integrates object pose or surface estimates between visual and tactile sensing, instead it uses the two modalities in complementary ways. Vision guides the robots motion prior to contact; touch updates the plan when contact occurs differently than predicted from vision. We show that our method successfully synthesises and executes precision grasps for previously unseen objects using surface estimates from a single camera view. Further, our approach outperforms a state of the art multi-fingered grasp planner, while also beating several baselines we propose.
translated by 谷歌翻译
成功掌握对象的能力在机器人中是至关重要的,因为它可以实现多个交互式下游应用程序。为此,大多数方法要么计算兴趣对象的完整6D姿势,要么学习预测一组掌握点。虽然前一种方法对多个对象实例或类没有很好地扩展,但后者需要大的注释数据集,并且受到新几何形状的普遍性能力差的阻碍。为了克服这些缺点,我们建议教授一个机器人如何用简单而简短的人类示范掌握一个物体。因此,我们的方法既不需要许多注释图像,也不限于特定的几何形状。我们首先介绍了一个小型RGB-D图像,显示人对象交互。然后利用该序列来构建表示所描绘的交互的相关手和对象网格。随后,我们完成重建对象形状的缺失部分,并估计了场景中的重建和可见对象之间的相对变换。最后,我们从物体和人手之间的相对姿势转移a-prioriz知识,随着当前对象在场景中的估计到机器人的必要抓握指令。与丰田的人类支持机器人(HSR)在真实和合成环境中的详尽评估证明了我们所提出的方法的适用性及其优势与以前的方法相比。
translated by 谷歌翻译
在人类环境中,预计在简单的自然语言指导下,机器人将完成各种操纵任务。然而,机器人的操纵极具挑战性,因为它需要精细颗粒的运动控制,长期记忆以及对以前看不见的任务和环境的概括。为了应对这些挑战,我们提出了一种基于统一的变压器方法,该方法考虑了多个输入。特别是,我们的变压器体系结构集成了(i)自然语言指示和(ii)多视图场景观察,而(iii)跟踪观察和动作的完整历史。这种方法使历史和指示之间的学习依赖性可以使用多个视图提高操纵精度。我们评估我们的方法在具有挑战性的RLBench基准和现实世界机器人方面。值得注意的是,我们的方法扩展到74个不同的RLBench任务,并超越了最新的现状。我们还解决了指导条件的任务,并证明了对以前看不见的变化的出色概括。
translated by 谷歌翻译
在工厂或房屋等环境中协助我们的机器人必须学会使用对象作为执行任务的工具,例如使用托盘携带对象。我们考虑了学习常识性知识何时可能有用的问题,以及如何与其他工具一起使用其使用以完成由人类指示的高级任务。具体而言,我们引入了一种新型的神经模型,称为Tooltango,该模型首先预测要使用的下一个工具,然后使用此信息来预测下一项动作。我们表明,该联合模型可以告知学习精细的策略,从而使机器人可以顺序使用特定工具,并在使模型更加准确的情况下增加了重要价值。 Tooltango使用图神经网络编码世界状态,包括对象和它们之间的符号关系,并使用人类教师的演示进行了培训,这些演示是指导物理模拟器中的虚拟机器人的演示。该模型学会了使用目标和动作历史的知识来参加场景,最终将符号动作解码为执行。至关重要的是,我们解决了缺少一些已知工具的看不见的环境的概括,但是存在其他看不见的工具。我们表明,通过通过从知识库中得出的预训练的嵌入来增强环境的表示,该模型可以有效地将其推广到新的环境中。实验结果表明,在预测具有看不见对象的新型环境中模拟移动操纵器的成功符号计划时,至少48.8-58.1%的绝对改善对基准的绝对改善。这项工作朝着使机器人能够快速合成复杂任务的强大计划的方向,尤其是在新颖的环境中
translated by 谷歌翻译
在现实世界中,教授多指的灵巧机器人在现实世界中掌握物体,这是一个充满挑战的问题,由于其高维状态和动作空间。我们提出了一个机器人学习系统,该系统可以进行少量的人类示范,并学会掌握在某些被遮挡的观察结果的情况下掌握看不见的物体姿势。我们的系统利用了一个小型运动捕获数据集,并为多指的机器人抓手生成具有多种多样且成功的轨迹的大型数据集。通过添加域随机化,我们表明我们的数据集提供了可以将其转移到策略学习者的强大抓地力轨迹。我们训练一种灵活的抓紧策略,该策略将对象的点云作为输入,并预测连续的动作以从不同初始机器人状态掌握对象。我们在模拟中评估了系统对22多伏的浮动手的有效性,并在现实世界中带有kuka手臂的23多杆Allegro机器人手。从我们的数据集中汲取的政策可以很好地概括在模拟和现实世界中的看不见的对象姿势
translated by 谷歌翻译
学习灵巧的操纵技巧是计算机图形和机器人技术的长期挑战,尤其是当任务涉及手,工具和物体之间的复杂而微妙的互动时。在本文中,我们专注于基于筷子的对象搬迁任务,这些任务很常见却又要求。成功的筷子技巧的关键是稳定地抓住棍棒,这也支持精致的演习。我们会自动发现贝叶斯优化(BO)和深钢筋学习(DRL)的身体有效的筷子姿势,它适用于多种握把的样式和手工形态,而无需示例数据。作为输入,我们要移动发现的抓紧姿势和所需的对象,我们构建了基于物理的手部控制器,以在两个阶段完成重定位任务。首先,运动轨迹是为筷子合成的,并处于运动计划阶段。我们运动策划者的关键组件包括一个握把模型,以选择用于抓住对象的合适筷子配置,以及一个轨迹优化模块,以生成无碰撞的筷子轨迹。然后,我们再次通过DRL训练基于物理的手部控制器,以跟踪运动计划者产生的所需运动轨迹。我们通过重新定位各种形状和尺寸的对象,以多种诱人的样式和多种手工形态的位置来展示框架的功能。与试图学习基于筷子的技能的香草系统相比,我们的系统实现了更快的学习速度和更好的控制鲁棒性,而无需抓紧姿势优化模块和/或没有运动学运动计划者。
translated by 谷歌翻译
We describe a learning-based approach to handeye coordination for robotic grasping from monocular images. To learn hand-eye coordination for grasping, we trained a large convolutional neural network to predict the probability that task-space motion of the gripper will result in successful grasps, using only monocular camera images and independently of camera calibration or the current robot pose. This requires the network to observe the spatial relationship between the gripper and objects in the scene, thus learning hand-eye coordination. We then use this network to servo the gripper in real time to achieve successful grasps. To train our network, we collected over 800,000 grasp attempts over the course of two months, using between 6 and 14 robotic manipulators at any given time, with differences in camera placement and hardware. Our experimental evaluation demonstrates that our method achieves effective real-time control, can successfully grasp novel objects, and corrects mistakes by continuous servoing.
translated by 谷歌翻译