考虑到未标记数据的性质,部分标记的培训数据集包含属于新型类别的样本是很常见的。尽管这些所谓的观察到的新类别存在于培训数据中,但它们不属于任何培训标签。相反,开放集将新类别定义为在训练过程中未观察到的类别,但在测试过程中存在。这项研究是第一个通过利用未标记的数据或开放式LACU来概括的新学习政策中观察到的新学习政策和未观察到的新型类别的研究。这项研究对新颖性检测进行了高级综述,以区分涉及观察到的新类别的研究领域以及涉及未观察到的新颖类别的研究领域。然后将Open-Lacu作为相关领域的合成,以维持每个学习策略中每个领域的优势。目前,我们正在敲定第一个开放式LACU网络,该网络将与此预印刷结合使用,以供出版。
translated by 谷歌翻译
分布(OOD)检测对于确保机器学习系统的可靠性和安全性至关重要。例如,在自动驾驶中,我们希望驾驶系统在发现在训练时间中从未见过的异常​​场景或对象时,发出警报并将控件移交给人类,并且无法做出安全的决定。该术语《 OOD检测》于2017年首次出现,此后引起了研究界的越来越多的关注,从而导致了大量开发的方法,从基于分类到基于密度到基于距离的方法。同时,其他几个问题,包括异常检测(AD),新颖性检测(ND),开放式识别(OSR)和离群检测(OD)(OD),在动机和方法方面与OOD检测密切相关。尽管有共同的目标,但这些主题是孤立发展的,它们在定义和问题设定方面的细微差异通常会使读者和从业者感到困惑。在这项调查中,我们首先提出一个称为广义OOD检测的统一框架,该框架涵盖了上述五个问题,即AD,ND,OSR,OOD检测和OD。在我们的框架下,这五个问题可以看作是特殊情况或子任务,并且更容易区分。然后,我们通过总结了他们最近的技术发展来审查这五个领域中的每一个,特别关注OOD检测方法。我们以公开挑战和潜在的研究方向结束了这项调查。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
在新颖的类发现(NCD)中,目标是在一个未标记的集合中找到新的类,并给定一组已知但不同的类别。尽管NCD最近引起了社区的关注,但尽管非常普遍的数据表示,但尚未提出异质表格数据的框架。在本文中,我们提出了TabularNCD,这是一种在表格数据中发现新类别的新方法。我们展示了一种从已知类别中提取知识的方法,以指导包含异质变量的表格数据中新型类的发现过程。该过程的一部分是通过定义伪标签的新方法来完成的,我们遵循多任务学习中的最新发现以优化关节目标函数。我们的方法表明,NCD不仅适用于图像,而且适用于异质表格数据。进行了广泛的实验,以评估我们的方法并证明其对7种不同公共分类数据集的3个竞争对手的有效性。
translated by 谷歌翻译
监督学习已被广​​泛用于攻击分类,需要高质量的数据和标签。但是,数据通常是不平衡的,很难获得足够的注释。此外,有监督的模型应遵守现实世界的部署问题,例如防御看不见的人造攻击。为了应对挑战,我们提出了一个半监督的细粒攻击分类框架,该框架由编码器和两个分支机构结构组成,并且该框架可以推广到不同的监督模型。具有残留连接的多层感知器用作提取特征并降低复杂性的编码器。提出了复发原型模块(RPM)以半监督的方式有效地训练编码器。为了减轻数据不平衡问题,我们将重量任务一致性(WTC)引入RPM的迭代过程中,通过将较大的权重分配给损失函数中较少样本的类别。此外,为了应对现实世界部署中的新攻击,我们提出了一种主动调整重新采样(AAR)方法,该方法可以更好地发现看不见的样本数据的分布并调整编码器的参数。实验结果表明,我们的模型优于最先进的半监督攻击检测方法,分类精度提高了3%,训练时间降低了90%。
translated by 谷歌翻译
在开放世界学习中,代理商从一组已知类,检测和管理它不知道的事情,并从非静止数据流中随时间了解它们。开放世界学习与众多其他学习问题不同,本文简要介绍了各种问题之间的关键差异,包括增量学习,广义新奇发现和广义零射击学习。本文规范了各种开放世界学习问题,包括没有标签的开放世界学习。这些开放世界问题可以通过对已知元素的修改来解决,我们提出了一个新的框架,使代理能够组合各种模块用于新颖性检测,新颖性表征,增量学习和实例管理,以从未标记的流学习新类数据以无人监督的方式,调查如何适应一些最先进的技术来符合框架,并使用它们在没有标签问题的情况下为开放世界学习的性能定义七个基线。然后,我们讨论开放世界的学习质量,并分析如何改善实例管理。我们还讨论了没有标签的开放世界学习中发生的一些普遍歧义问题。
translated by 谷歌翻译
在本文中,我们考虑一个高度通用的图像识别设置,其中,给定标记和未标记的图像集,任务是在未标记的集合中对所有图像进行分类。这里,未标记的图像可以来自标记的类或新颖的图像。现有的识别方法无法处理此设置,因为它们会产生几种限制性假设,例如仅来自已知或未知 - 类的未标记的实例以及已知的未知类的数量。我们解决了更加不受约束的环境,命名为“广义类别发现”,并挑战所有这些假设。我们首先通过从新型类别发现和适应这项任务的最先进的算法来建立强有力的基线。接下来,我们建议使用视觉变形金刚,为此开放的世界设置具有对比的代表学习。然后,我们介绍一个简单而有效的半监督$ k $ -means方法,将未标记的数据自动聚类,看不见的类,显着优于基线。最后,我们还提出了一种新的方法来估计未标记数据中的类别数。我们彻底评估了我们在公共数据集上的方法,包括Cifar10,CiFar100和Imagenet-100,以及包括幼崽,斯坦福汽车和植宝司19,包括幼崽,斯坦福汽车和Herbarium19,在这个新的环境中基准测试,以培养未来的研究。
translated by 谷歌翻译
Semi-supervised anomaly detection is a common problem, as often the datasets containing anomalies are partially labeled. We propose a canonical framework: Semi-supervised Pseudo-labeler Anomaly Detection with Ensembling (SPADE) that isn't limited by the assumption that labeled and unlabeled data come from the same distribution. Indeed, the assumption is often violated in many applications - for example, the labeled data may contain only anomalies unlike unlabeled data, or unlabeled data may contain different types of anomalies, or labeled data may contain only 'easy-to-label' samples. SPADE utilizes an ensemble of one class classifiers as the pseudo-labeler to improve the robustness of pseudo-labeling with distribution mismatch. Partial matching is proposed to automatically select the critical hyper-parameters for pseudo-labeling without validation data, which is crucial with limited labeled data. SPADE shows state-of-the-art semi-supervised anomaly detection performance across a wide range of scenarios with distribution mismatch in both tabular and image domains. In some common real-world settings such as model facing new types of unlabeled anomalies, SPADE outperforms the state-of-the-art alternatives by 5% AUC in average.
translated by 谷歌翻译
半监督学习(SSL)在稀缺标记的数据时取得了长足的进步,但未标记的数据丰富。至关重要的是,最近的工作假设这种未标记的数据是从与标记数据相同的分布中汲取的。在这项工作中,我们表明,在存在未标记的辅助数据的情况下,最先进的SSL算法在性能下遭受了降解,这些数据不一定具有与标签集相同的类别分布。我们将此问题称为辅助-SSL,并提出了AuxMix,这是一种利用自我监督的学习任务来学习通用功能,以掩盖与标记的集合在语义上相似的辅助数据。我们还建议通过最大化不同辅助样品的预测熵来正规化学习。当在CIFAR10数据集中培训带有4K标记的样品时,我们在Resnet-50型号上显示了5%的改善,并且从Tiny-ImageNet数据集中绘制所有未标记的数据。我们报告了几个数据集的竞争结果,并进行消融研究。
translated by 谷歌翻译
大多数现有的少量学习(FSL)方法都需要大量的元训练中标记数据,这是一个主要限制。为了减少标签的需求,已经为FSL提出了半监督的元训练设置,其中仅包括几个标记的样品和基础类别中的未标记样本数量。但是,此设置下的现有方法需要从未标记的集合中选择类吸引的样本选择,这违反了未标记集的假设。在本文中,我们提出了一个实用的半监督元训练环境,并使用真正的未标记数据。在新设置下,现有方法的性能显着下降。为了更好地利用标签和真正未标记的数据,我们提出了一个简单有效的元训练框架,称为基于元学习(PLML)的伪标记。首先,我们通过常见的半监督学习(SSL)训练分类器,并使用它来获取未标记数据的伪标记。然后,我们从标记和伪标记的数据中构建了几个射击任务,并在构造的任务上运行元学习以学习FSL模型。令人惊讶的是,通过在两个FSL数据集的广泛实验中,我们发现这个简单的元训练框架有效地防止了在有限的标记数据下FSL的性能降解。此外,从元培训中受益,提出的方法还改善了两种代表性SSL算法所学的分类器。
translated by 谷歌翻译
In semi-supervised representation learning frameworks, when the number of labelled data is very scarce, the quality and representativeness of these samples become increasingly important. Existing literature on semi-supervised learning randomly sample a limited number of data points for labelling. All these labelled samples are then used along with the unlabelled data throughout the training process. In this work, we ask two important questions in this context: (1) does it matter which samples are selected for labelling? (2) does it matter how the labelled samples are used throughout the training process along with the unlabelled data? To answer the first question, we explore a number of unsupervised methods for selecting specific subsets of data to label (without prior knowledge of their labels), with the goal of maximizing representativeness w.r.t. the unlabelled set. Then, for our second line of inquiry, we define a variety of different label injection strategies in the training process. Extensive experiments on four popular datasets, CIFAR-10, CIFAR-100, SVHN, and STL-10, show that unsupervised selection of samples that are more representative of the entire data improves performance by up to ~2% over the existing semi-supervised frameworks such as MixMatch, ReMixMatch, FixMatch and others with random sample labelling. We show that this boost could even increase to 7.5% for very few-labelled scenarios. However, our study shows that gradually injecting the labels throughout the training procedure does not impact the performance considerably versus when all the existing labels are used throughout the entire training.
translated by 谷歌翻译
本文解决了新型类别发现(NCD)的问题,该问题旨在区分大规模图像集中的未知类别。 NCD任务由于与现实世界情景的亲密关系而具有挑战性,我们只遇到了一些部分类和图像。与NCD上的其他作品不同,我们利用原型强调类别歧视的重要性,并减轻缺少新颖阶级注释的问题。具体而言,我们提出了一种新型的适应性原型学习方法,该方法由两个主要阶段组成:原型表示学习和原型自我训练。在第一阶段,我们获得了一个可靠的特征提取器,该功能提取器可以为所有具有基础和新颖类别的图像提供。该功能提取器的实例和类别歧视能力通过自我监督的学习和适应性原型来提高。在第二阶段,我们再次利用原型来整理离线伪标签,并训练类别聚类的最终参数分类器。我们对四个基准数据集进行了广泛的实验,并证明了该方法具有最先进的性能的有效性和鲁棒性。
translated by 谷歌翻译
半监督学习(SSL)有望通过对许多未标记图像进行培训,与小标签数据集中的培训分类器相比,准确性的提高。在诸如医学成像之类的现实应用中,将收集未标记的集合,以提高权宜之计,因此未贴上:可能与代表类或类频率中的标记集合不同。不幸的是,现代的深SSL通常会使未经保证的未标记的集合变得更糟。最近的补救措施表明,过滤方法可以检测出分布未标记的示例,然后将其丢弃或减轻重量。相反,我们认为所有未标记的示例可能会有所帮助。我们介绍了一个称为Fix-A-Step的程序,该程序尽管缺乏策划,但仍可以提高常见的深SSL方法的持有准确性。关键的创新是受所有未标记数据启发的标签集的增强,并修改了梯度下降更新,以防止遵循多任务SSL损失损害标签集的精度。尽管我们的方法比替代方案更简单,但我们在所有测试的人工污染水平上显示了无标记集的所有测试水平的CIFAR-10和CIFAR-100基准的准确性提高。我们进一步建议SSL的真实医疗基准:识别心脏超声图像的视图类型。我们的方法可以从353,500个真正未经贴标记的图像中学习,以提供跨医院的概括的收益。
translated by 谷歌翻译
数据驱动的生成机器学习模型最近被出现为最有希望的新材料发现方法之一。虽然发电机型号可以产生数百万候选者,但训练快速准确的机器学习模型至关重要,以滤除具有所需特性的稳定,可合成的材料。然而,通过缺乏不稳定或不合益的样本严重阻碍了构建监督回归或分类筛查模型的努力,这通常不会收集和沉积在诸如ICSD和材料项目(MP)的材料数据库中。与此同时,这些数据库中有很多未标记的数据。在这里,我们提出了一个半监控的深度神经网络(TSDNN)模型,用于高性能形成能量和合成性预测,通过其独特的教师 - 学生双网络架构实现,并有效利用大量未标记数据。对于基于能量基于能量的稳定性筛选,与基线CGCNN回归模型相比,我们的半监控分类器实现了绝对的10.3 \%的准确性改进。对于合成性预测,我们的模型显着增加了基准PU学习从87.9 \%到97.9 \%的真正阳性率使用1/49型号参数。为了进一步证明我们模型的有效性,我们将我们的TSDNN-Energy和Tsdnn-InsteSizability模型与我们的Cubicgan发生器组合起来,以发现新型稳定的立方体结构。我们的模型中的1000个推荐的候选样品,其中512个具有由我们的DFT形成能量计算验证的负面形成能量。我们的实验结果表明,我们的半监督深度神经网络可以在大型生成材料设计中显着提高筛选准确性。
translated by 谷歌翻译
人类识别对象何时已知或当前新颖的能力胜过所有开放式识别算法。通过心理学视觉心理物理学的方法和过程来衡量的人类感知可以为计算机视觉中的视觉识别任务中的新颖性提供附加的数据流。例如,人类受试者的测量反应时间可以提供有关是否可能与新颖的样本相混淆的洞察力。在这项工作中,我们设计并进行了大规模的行为实验,该实验收集了超过200,000种与物体识别相关的人类反应时间测量。收集的数据指示的反应时间在样本级别的对象之间有意义地变化。因此,我们设计了一种新的心理物理损失函数,该函数在深网中与人类行为保持一致性,该函数在不同图像中显示出可变的反应时间。与生物学愿景一样,这种方法使我们能够在标记有限的培训数据的制度中实现良好的开放式识别性能。通过使用来自ImageNet的数据的实验,当训练具有这种新配方的多尺度登记材料时,可以观察到显着改善:经过损失功能训练的模型可显着提高TOP-1验证精度7%,对已知样品的TOP-1测试准确性提高18% ,以及未知样品的TOP-1测试精度33%。我们将我们的方法与文献中的10种开放式识别方法进行了比较,这些方法在多个指标上的表现都优于。
translated by 谷歌翻译
Managing novelty in perception-based human activity recognition (HAR) is critical in realistic settings to improve task performance over time and ensure solution generalization outside of prior seen samples. Novelty manifests in HAR as unseen samples, activities, objects, environments, and sensor changes, among other ways. Novelty may be task-relevant, such as a new class or new features, or task-irrelevant resulting in nuisance novelty, such as never before seen noise, blur, or distorted video recordings. To perform HAR optimally, algorithmic solutions must be tolerant to nuisance novelty, and learn over time in the face of novelty. This paper 1) formalizes the definition of novelty in HAR building upon the prior definition of novelty in classification tasks, 2) proposes an incremental open world learning (OWL) protocol and applies it to the Kinetics datasets to generate a new benchmark KOWL-718, 3) analyzes the performance of current state-of-the-art HAR models when novelty is introduced over time, 4) provides a containerized and packaged pipeline for reproducing the OWL protocol and for modifying for any future updates to Kinetics. The experimental analysis includes an ablation study of how the different models perform under various conditions as annotated by Kinetics-AVA. The protocol as an algorithm for reproducing experiments using the KOWL-718 benchmark will be publicly released with code and containers at https://github.com/prijatelj/human-activity-recognition-in-an-open-world. The code may be used to analyze different annotations and subsets of the Kinetics datasets in an incremental open world fashion, as well as be extended as further updates to Kinetics are released.
translated by 谷歌翻译
恶意软件检测在网络安全中起着至关重要的作用,随着恶意软件增长的增加和网络攻击的进步。以前看不见的恶意软件不是由安全供应商确定的,这些恶意软件通常在这些攻击中使用,并且不可避免地要找到可以从未标记的样本数据中自学习的解决方案。本文介绍了Sherlock,这是一种基于自学的深度学习模型,可根据视觉变压器(VIT)体系结构检测恶意软件。 Sherlock是一种新颖的恶意软件检测方法,它可以通过使用基于图像的二进制表示形式来学习独特的功能,以区分恶意软件和良性程序。在47种类型和696个家庭的层次结构中使用120万个Android应用的实验结果表明,自我监督的学习可以达到97%的恶意软件分类,而恶意软件的二进制分类比现有的最新技术更高。我们提出的模型还能够胜过针对多级恶意软件类型和家庭的最先进技术,分别为.497和.491。
translated by 谷歌翻译
随着人工智能的最新进展,可以在人类日常生活的各个方面看到其应用。从语音助手到移动医疗保健和自动驾驶,我们依靠AI方法的性能来完成许多关键任务;因此,必须以适当的手段进行预防损坏的方式主张模型的性能。通常,AI模型的短缺,尤其是深度机器学习,当面对数据分布的变化时,性能下降。尽管如此,在现实世界应用中始终期望这些转变。因此,已经出现了一个研究领域,重点是检测分布外数据子集并实现更全面的概括。此外,由于许多基于深度学习的模型在基准数据集上取得了近乎完美的结果,因此需要评估这些模型的可靠性和可靠性以推向现实世界应用程序的需求,这比以往任何时候都更加强烈。这引起了越来越多的研究领域的研究和领域的概括,这引起了对从各个角度比较这些研究进行比较的调查的需求,并突出了它们的平直和弱点。本文提出了一项调查,除了审查该领域的70多篇论文外,还提出了未来作品的挑战和方向,并为各种类型的数据转移和解决方案提供了统一的外观,以更好地泛化。
translated by 谷歌翻译
半监督学习(SSL)是使用不仅标记的示例,而且是未标记的示例学习预测模型的常见方法。尽管用于分类和回归的简单任务的SSL受到了研究社区的广泛关注,但对于具有结构依赖变量的复杂预测任务,这尚未得到适当的研究。这种情况是多标签分类和分层多标签分类任务,可能需要其他信息,可能来自未标记示例提供的描述性空间中的基础分布,以更好地面对同时预测多个类别标签的挑战性任务。在本文中,我们研究了这一方面,并​​提出了一种基于对预测性聚类树的半监督学习的(分层)多标签分类方法。我们还扩展了整体学习的方法,并提出了一种基于随机森林方法的方法。在23个数据集上进行的广泛实验评估显示了该方法的显着优势及其在其监督对应物方面的扩展。此外,该方法可保留可解释性并降低基于经典树模型的时间复杂性。
translated by 谷歌翻译
The International Workshop on Reading Music Systems (WoRMS) is a workshop that tries to connect researchers who develop systems for reading music, such as in the field of Optical Music Recognition, with other researchers and practitioners that could benefit from such systems, like librarians or musicologists. The relevant topics of interest for the workshop include, but are not limited to: Music reading systems; Optical music recognition; Datasets and performance evaluation; Image processing on music scores; Writer identification; Authoring, editing, storing and presentation systems for music scores; Multi-modal systems; Novel input-methods for music to produce written music; Web-based Music Information Retrieval services; Applications and projects; Use-cases related to written music. These are the proceedings of the 3rd International Workshop on Reading Music Systems, held in Alicante on the 23rd of July 2021.
translated by 谷歌翻译