Semi-supervised anomaly detection is a common problem, as often the datasets containing anomalies are partially labeled. We propose a canonical framework: Semi-supervised Pseudo-labeler Anomaly Detection with Ensembling (SPADE) that isn't limited by the assumption that labeled and unlabeled data come from the same distribution. Indeed, the assumption is often violated in many applications - for example, the labeled data may contain only anomalies unlike unlabeled data, or unlabeled data may contain different types of anomalies, or labeled data may contain only 'easy-to-label' samples. SPADE utilizes an ensemble of one class classifiers as the pseudo-labeler to improve the robustness of pseudo-labeling with distribution mismatch. Partial matching is proposed to automatically select the critical hyper-parameters for pseudo-labeling without validation data, which is crucial with limited labeled data. SPADE shows state-of-the-art semi-supervised anomaly detection performance across a wide range of scenarios with distribution mismatch in both tabular and image domains. In some common real-world settings such as model facing new types of unlabeled anomalies, SPADE outperforms the state-of-the-art alternatives by 5% AUC in average.
translated by 谷歌翻译
异常检测(AD),将异常与正常数据分开,从安全性到医疗保健都有许多范围内的应用程序。尽管大多数以前的作品都被证明对具有完全或部分标记数据的案例有效,但由于标记对此任务特别乏味,因此设置在实践中较不常见。在本文中,我们专注于完全无监督的AD,其中包含正常样本和异常样本的整个培训数据集未标记。为了有效地解决这个问题,我们建议通过使用数据改进过程来提高接受自我监督表示的一类分类的鲁棒性。我们提出的数据完善方法基于单级分类器(OCCS)的集合,每个分类器均经过培训的训练数据子集。随着数据改进的改进,通过自我监督学习学到的表示的表示。我们在具有图像和表格数据的各种无监督的AD任务上演示了我们的方法。 CIFAR-10图像数据的异常比率为10% /甲状腺表格数据的2.5%异常比率,该方法的表现优于最先进的单级分类器,高于6.3 AUC和12.5平均精度 / 22.9 F1评分。 。
translated by 谷歌翻译
异常检测旨在识别正常数据分布的偏差样本。对比学习提供了一种成功的样本表示方式,可以有效地歧视异常。但是,当在半监督环境下设置的训练中被未标记的异常样本污染时,当前基于对比的方法通常1)忽略训练数据之间的全面关系,导致次优的性能,2)需要微调,导致低效率的低效率。为了解决上述两个问题,在本文中,我们提出了一种新型的分层半监督对比学习(HSCL)框架,以抗污染异常检测。具体而言,HSCL分层调节了三个互补关系:样本到样本,样本到原型型和正常关系,通过对受污染数据的全面探索,扩大了正常样本和异常样本之间的歧视。此外,HSCL是一种端到端的学习方法,可以在不进行微调的情况下有效地学习判别性表示。 HSCL在多种方案中实现了最先进的性能,例如单级分类和跨数据库检测。广泛的消融研究进一步验证了每个考虑的关系的有效性。该代码可在https://github.com/gaoangw/hscl上找到。
translated by 谷歌翻译
异常检测旨在识别数据点,这些数据点显示了未标记数据集中大多数数据的系统偏差。一个普遍的假设是,可以使用干净的培训数据(没有异常),这在实践中通常会违反。我们提出了一种在存在与广泛模型兼容的未标记异常的情况下训练异常检测器的策略。这个想法是在更新模型参数时将二进制标签共同推断为每个基准(正常与异常)。受到异常暴露的启发(Hendrycks等人,2018年),该暴露考虑合成创建,标记为异常,我们因此使用了两个共享参数的损失的组合:一个用于正常参数,一个用于异常数据。然后,我们对参数和最可能(潜在)标签进行块坐标更新。我们在三个图像数据集,30个表格数据集和视频异常检测基准上使用几个主链模型进行了实验,对基线显示了一致且显着的改进。
translated by 谷歌翻译
考虑到过去几十年中开发的一长串异常检测算法,它们如何在(i)(i)不同级别的监督,(ii)不同类型的异常以及(iii)嘈杂和损坏的数据方面执行?在这项工作中,我们通过(据我们所知)在55个名为Adbench的55个基准数据集中使用30个算法来回答这些关键问题。我们的广泛实验(总共93,654)确定了对监督和异常类型的作用的有意义的见解,并解锁了研究人员在算法选择和设计中的未来方向。借助Adbench,研究人员可以轻松地对数据集(包括我们从自然语言和计算机视觉域的贡献)对现有基线的新提出的方法进行全面和公平的评估。为了促进可访问性和可重复性,我们完全开源的Adbench和相应的结果。
translated by 谷歌翻译
半监督异常检测(AD)是一种数据挖掘任务,旨在从部分标记的数据集中学习功能,以帮助检测异常值。在本文中,我们将现有的半监督AD方法分为两类:无监督和基于监督的基于监督的,并指出其中大多数人对标记数据的利用不足和未经标记的数据的探索不足。为了解决这些问题,我们提出了深度的异常检测和搜索(DADS),该检测(DADS)应用了增强学习(RL)以平衡剥削和探索。在培训过程中,代理商通过层次结构的数据集搜索可能的异常情况,并使用搜索异常来增强性能,从本质上讲,这本质上从合奏学习的想法中汲取了教训。在实验上,我们将DAD与利用标记已知异常的标记为检测其他已知异常和未知异常的几种最新方法进行了比较。结果表明,爸爸可以从未标记的数据中有效,精确地搜索异常,并向它们学习,从而实现良好的性能。
translated by 谷歌翻译
监督学习已被广​​泛用于攻击分类,需要高质量的数据和标签。但是,数据通常是不平衡的,很难获得足够的注释。此外,有监督的模型应遵守现实世界的部署问题,例如防御看不见的人造攻击。为了应对挑战,我们提出了一个半监督的细粒攻击分类框架,该框架由编码器和两个分支机构结构组成,并且该框架可以推广到不同的监督模型。具有残留连接的多层感知器用作提取特征并降低复杂性的编码器。提出了复发原型模块(RPM)以半监督的方式有效地训练编码器。为了减轻数据不平衡问题,我们将重量任务一致性(WTC)引入RPM的迭代过程中,通过将较大的权重分配给损失函数中较少样本的类别。此外,为了应对现实世界部署中的新攻击,我们提出了一种主动调整重新采样(AAR)方法,该方法可以更好地发现看不见的样本数据的分布并调整编码器的参数。实验结果表明,我们的模型优于最先进的半监督攻击检测方法,分类精度提高了3%,训练时间降低了90%。
translated by 谷歌翻译
Recent semi-supervised and self-supervised methods have shown great success in the image and text domain by utilizing augmentation techniques. Despite such success, it is not easy to transfer this success to tabular domains. It is not easy to adapt domain-specific transformations from image and language to tabular data due to mixing of different data types (continuous data and categorical data) in the tabular domain. There are a few semi-supervised works on the tabular domain that have focused on proposing new augmentation techniques for tabular data. These approaches may have shown some improvement on datasets with low-cardinality in categorical data. However, the fundamental challenges have not been tackled. The proposed methods either do not apply to datasets with high-cardinality or do not use an efficient encoding of categorical data. We propose using conditional probability representation and an efficient progressively feature upgrading framework to effectively learn representations for tabular data in semi-supervised applications. The extensive experiments show superior performance of the proposed framework and the potential application in semi-supervised settings.
translated by 谷歌翻译
半监督学习(SSL)在稀缺标记的数据时取得了长足的进步,但未标记的数据丰富。至关重要的是,最近的工作假设这种未标记的数据是从与标记数据相同的分布中汲取的。在这项工作中,我们表明,在存在未标记的辅助数据的情况下,最先进的SSL算法在性能下遭受了降解,这些数据不一定具有与标签集相同的类别分布。我们将此问题称为辅助-SSL,并提出了AuxMix,这是一种利用自我监督的学习任务来学习通用功能,以掩盖与标记的集合在语义上相似的辅助数据。我们还建议通过最大化不同辅助样品的预测熵来正规化学习。当在CIFAR10数据集中培训带有4K标记的样品时,我们在Resnet-50型号上显示了5%的改善,并且从Tiny-ImageNet数据集中绘制所有未标记的数据。我们报告了几个数据集的竞争结果,并进行消融研究。
translated by 谷歌翻译
鉴于在现实世界应用中缺乏异常情况,大多数文献一直集中在建模正态上。学到的表示形式可以将异常检测作为正态性模型进行训练,以捕获正常情况下的某些密钥数据规律性。在实际环境中,尤其是工业时间序列异常检测中,我们经常遇到有大量正常操作数据以及随时间收集的少量异常事件的情况。这种实际情况要求方法学来利用这些少量的异常事件来创建更好的异常检测器。在本文中,我们介绍了两种方法来满足这种实际情况的需求,并将其与最近开发的最新技术进行了比较。我们提出的方法锚定在具有自回归(AR)模型的正常运行的代表性学习以及损失组件上,以鼓励表示正常与几个积极示例的表示形式。我们将提出的方法应用于两个工业异常检测数据集,并与文献相比表现出有效的性能。我们的研究还指出了在实际应用中采用此类方法的其他挑战。
translated by 谷歌翻译
图异常检测(GAD)是至关重要的任务,因为即使有一些异常也可能对良性用户构成巨大威胁。最近可以有效利用可用标签作为先验知识的半监督GAD方法比无监督的方法实现了卓越的性能。实际上,人们通常需要在新(子)图上识别异常以确保其业务,但他们可能缺乏培训有效检测模型的标签。一个自然的想法是将经过训练的GAD模型直接在新的(子)图中进行测试。但是,我们发现现有的半监督GAD方法遇到了不良的概括问题,即训练有素的模型无法在同一图的看不见的区域(即无法在培训中无法访问)上表现良好。这可能会造成极大的麻烦。在本文中,我们以这种现象为基础,并提出了广义图异常检测的一般研究问题,旨在有效地识别训练域图和看不见的测试图,以消除潜在的危险。然而,这是一项具有挑战性的任务,因为只有有限的标签可用,并且正常背景在培训和测试数据之间可能有所不同。因此,我们提出了一个名为\ textit {augan}(\ uline {augan}的数据增强方法,用于\ uline {a} nomaly和\ uline {n} ormal分布),以丰富培训数据并促进GAD模型的普遍性。实验验证了我们方法在改善模型推广性方面的有效性。
translated by 谷歌翻译
Time-series anomaly detection is an important task and has been widely applied in the industry. Since manual data annotation is expensive and inefficient, most applications adopt unsupervised anomaly detection methods, but the results are usually sub-optimal and unsatisfactory to end customers. Weak supervision is a promising paradigm for obtaining considerable labels in a low-cost way, which enables the customers to label data by writing heuristic rules rather than annotating each instance individually. However, in the time-series domain, it is hard for people to write reasonable labeling functions as the time-series data is numerically continuous and difficult to be understood. In this paper, we propose a Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) system, which enables a user to improve the results of unsupervised anomaly detection by performing only a small amount of interactions with the system. To achieve this goal, the system integrates weak supervision and active learning collaboratively while generating labeling functions automatically using only a few labeled data. All of these techniques are complementary and can promote each other in a reinforced manner. We conduct experiments on three time-series anomaly detection datasets, demonstrating that the proposed system is superior to existing solutions in both weak supervision and active learning areas. Also, the system has been tested in a real scenario in industry to show its practicality.
translated by 谷歌翻译
异常检测方法努力以语义方式发现与规范不同的模式。这个目标是模棱两可的,因为数据点与规范不同的属性不同,例如年龄,种族或性别,可能被某些操作员认为是异常的,而其他操作员可能认为这种属性无关紧要。从先前的研究中断,我们提出了一种新的异常检测方法,该方法使操作员可以将属性排除在被认为与异常检测相关的情况下。然后,我们的方法学习了不包含有关滋扰属性的信息的表示形式。使用基于密度的方法进行异常评分。重要的是,我们的方法不需要指定与检测异常相关的属性,这在异常检测中通常是不可能的,而是只能忽略的属性。提出了一项实证研究,以验证我们方法的有效性。
translated by 谷歌翻译
我们提出了Parse,这是一种新颖的半监督结构,用于学习强大的脑电图表现以进行情感识别。为了减少大量未标记数据与标记数据有限的潜在分布不匹配,Parse使用成对表示对准。首先,我们的模型执行数据增强,然后标签猜测大量原始和增强的未标记数据。然后将其锐化的标签和标记数据的凸组合锐化。最后,进行表示对准和情感分类。为了严格测试我们的模型,我们将解析与我们实施并适应脑电图学习的几种最先进的半监督方法进行了比较。我们对四个基于公共EEG的情绪识别数据集,种子,种子IV,种子V和Amigos(价和唤醒)进行这些实验。该实验表明,我们提出的框架在种子,种子-IV和Amigos(Valence)中的标记样品有限的情况下,取得了总体最佳效果,同时接近种子V和Amigos中的总体最佳结果(达到第二好) (唤醒)。分析表明,我们的成对表示对齐方式通过减少未标记数据和标记数据之间的分布比对来大大提高性能,尤其是当每类仅1个样本被标记时。
translated by 谷歌翻译
由于缺乏标签信息,异常检测是机器学习中的基本但具有挑战性的问题。在这项工作中,我们提出了一种新颖而强大的框架,称为SLA $ ^ 2 $ P,用于无监督的异常检测。在从原始数据中提取代表性嵌入后,我们将随机投影应用于特征,并将不同投影转换的特征视为属于不同的伪类。然后,我们在这些转换功能上培训一个分类器网络,以执行自我监督的学习。接下来,我们向变换特征添加对冲扰动,以减少预测标签的软MAX分数,并基于这些扰动特征对分类器的预测不确定性来降低预测标签和设计异常分数。我们的动机是,由于相对较小的数量和分散的异常模式,1)伪标签分类器的培训更集中学习正常数据的语义信息而不是异常数据; 2)正常数据的转换特征比异常的扰动更强大。因此,异常的扰动转化的特征不能良好分类,因此具有比正常样本的异常分数低。在图像,文本和固有的表格基准数据集上进行了广泛的实验,并表明SLA $ ^ 2 $ p实现了最先进的导致无监督的异常检测任务一致。
translated by 谷歌翻译
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels. Recently, two-stage self-training methods have achieved significant improvements by self-generating pseudo labels and self-refining anomaly scores with these labels. As the pseudo labels play a crucial role, we propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training. Specifically, we first design a multi-head classification module (each head serves as a classifier) with a diversity loss to maximize the distribution differences of predicted pseudo labels across heads. This encourages the generated pseudo labels to cover as many abnormal events as possible. We then devise an iterative uncertainty pseudo label refinement strategy, which improves not only the initial pseudo labels but also the updated ones obtained by the desired classifier in the second stage. Extensive experimental results demonstrate the proposed method performs favorably against state-of-the-art approaches on the UCF-Crime, TAD, and XD-Violence benchmark datasets.
translated by 谷歌翻译
现代云计算系统包含数百到数千个计算和存储服务器。这种规模与不断增长的系统复杂性相结合,对可靠云计算的失败和资源管理导致关键挑战。自主失败检测是了解系统级可靠性保证的紧急,云现象和自我管理云资源的重要技术。要检测到失败,我们需要监控云执行并收集运行时性能数据。这些数据通常是未标记的,因此在生产云中并不总是可用的现有故障历史。在本文中,我们提出了一种\ emph {自我不断发展的异常检测}(SEAD)框架,用于云可靠性保证。我们的框架通过递归探索新验证的异常记录并在线持续更新异常探测器。作为我们框架的鲜明优势,云系统管理员只需要检查少量检测到的异常,并且它们的决定可以利用以更新探测器。因此,探测器在升级系统硬件,软件堆栈的更新和用户工作负载的更改之后演变。此外,我们设计了两种类型的探测器,一个用于一般异常检测,另一类用于特异性异常检测。在自我不断发展的技术的帮助下,我们的探测器可以平均达到88.94 \%的灵敏度和94.60 \%,这使得它们适合现实世界部署。
translated by 谷歌翻译
无监督的时间序列异常检测对各种域中目标系统的潜在故障有助于。当前的最新时间序列异常检测器主要集中于设计高级神经网络结构和新的重建/预测学习目标,以尽可能准确地学习数据正常(正常模式和行为)。但是,这些单级学习方法可以被训练数据中未知异常(即异常污染)所欺骗。此外,他们的正常学习也缺乏对感兴趣异常的知识。因此,他们经常学习一个有偏见的,不准确的正态边界。本文提出了一种新型的单级学习方法,称为校准的一级分类,以解决此问题。我们的单级分类器以两种方式进行校准:(1)通过适应性地惩罚不确定的预测,这有助于消除异常污染的影响,同时强调单级模型对一级模型有信心的预测,并通过区分正常情况来确定(2)来自本机异常示例的样本,这些样本是根据原始数据基于原始数据模拟真实时间序列异常行为的。这两个校准导致耐污染的,异常的单级学习,从而产生了显着改善的正态性建模。对六个现实世界数据集进行的广泛实验表明,我们的模型大大优于12个最先进的竞争对手,并获得了6%-31%的F1分数提高。源代码可在\ url {https://github.com/xuhongzuo/couta}中获得。
translated by 谷歌翻译
在新颖的类发现(NCD)中,目标是在一个未标记的集合中找到新的类,并给定一组已知但不同的类别。尽管NCD最近引起了社区的关注,但尽管非常普遍的数据表示,但尚未提出异质表格数据的框架。在本文中,我们提出了TabularNCD,这是一种在表格数据中发现新类别的新方法。我们展示了一种从已知类别中提取知识的方法,以指导包含异质变量的表格数据中新型类的发现过程。该过程的一部分是通过定义伪标签的新方法来完成的,我们遵循多任务学习中的最新发现以优化关节目标函数。我们的方法表明,NCD不仅适用于图像,而且适用于异质表格数据。进行了广泛的实验,以评估我们的方法并证明其对7种不同公共分类数据集的3个竞争对手的有效性。
translated by 谷歌翻译
半监督学习(SSL)是规避建立高性能模型的昂贵标签成本的最有前途的范例之一。大多数现有的SSL方法常规假定标记和未标记的数据是从相同(类)分布中绘制的。但是,在实践中,未标记的数据可能包括课外样本;那些不能从标签数据中的封闭类中的单热编码标签,即未标记的数据是开放设置。在本文中,我们介绍了Opencos,这是一种基于最新的自我监督视觉表示学习框架来处理这种现实的半监督学习方案。具体而言,我们首先观察到,可以通过自我监督的对比度学习有效地识别开放式未标记数据集中的类外样本。然后,Opencos利用此信息来克服现有的最新半监督方法中的故障模式,通过利用一式旋转伪标签和软标签来为已识别的识别和外部未标记的标签数据分别。我们广泛的实验结果表明了Opencos的有效性,可以修复最新的半监督方法,适合涉及开放式无标记数据的各种情况。
translated by 谷歌翻译