强化学习的最新出现为使用这些算法计算的参数估计值创造了强大的统计推断方法的需求。现有的在线学习中统计推断的方法仅限于涉及独立采样观察的设置,而现有的强化学习中统计推断方法(RL)仅限于批处理设置。在线引导程序是一种灵活,有效的方法,用于线性随机近似算法中的统计推断,但在涉及Markov噪声(例如RL)的设置中,其功效尚未探索。在本文中,我们研究了在线引导方法在RL中的统计推断的使用。特别是,我们专注于时间差异(TD)学习和梯度TD(GTD)学习算法,它们本身就是马尔可夫噪声下线性随机近似的特殊实例。该方法在策略评估中的统计推断上表明该方法在分布上是一致的,并且包括数值实验,以证明该算法在跨一系列实际RL环境中在统计推断任务上的有效性。
translated by 谷歌翻译
我们考虑在离线域中的强化学习(RL)方法,没有其他在线数据收集,例如移动健康应用程序。计算机科学文献中的大多数现有策略优化算法都是在易于收集或模拟的在线设置中开发的。通过预采用的离线数据集,它们对移动健康应用程序的概括尚不清楚。本文的目的是开发一个新颖的优势学习框架,以便有效地使用预采用的数据进行策略优化。所提出的方法采用由任何现有的最新RL算法计算的最佳Q-估计器作为输入,并输出一项新策略,其价值比基于初始Q-得出的策略更快地收敛速度。估计器。进行广泛的数值实验以支持我们的理论发现。我们提出的方法的Python实现可在https://github.com/leyuanheart/seal上获得。
translated by 谷歌翻译
离线政策评估(OPE)被认为是强化学习(RL)的基本且具有挑战性的问题。本文重点介绍了基于从无限 - 马尔可夫决策过程的框架下从可能不同策略生成的预收集的数据的目标策略的价值估计。由RL最近开发的边际重要性采样方法和因果推理中的协变量平衡思想的动机,我们提出了一个新颖的估计器,具有大约投影的国家行动平衡权重,以进行策略价值估计。我们获得了这些权重的收敛速率,并表明拟议的值估计量在技术条件下是半参数有效的。就渐近学而言,我们的结果比例均以每个轨迹的轨迹数量和决策点的数量进行扩展。因此,当决策点数量分歧时,仍然可以使用有限的受试者实现一致性。此外,我们开发了一个必要且充分的条件,以建立贝尔曼操作员在政策环境中的适当性,这表征了OPE的困难,并且可能具有独立的利益。数值实验证明了我们提出的估计量的有希望的性能。
translated by 谷歌翻译
We investigate statistical uncertainty quantification for reinforcement learning (RL) and its implications in exploration policy. Despite ever-growing literature on RL applications, fundamental questions about inference and error quantification, such as large-sample behaviors, appear to remain quite open. In this paper, we fill in the literature gap by studying the central limit theorem behaviors of estimated Q-values and value functions under various RL settings. In particular, we explicitly identify closed-form expressions of the asymptotic variances, which allow us to efficiently construct asymptotically valid confidence regions for key RL quantities. Furthermore, we utilize these asymptotic expressions to design an effective exploration strategy, which we call Q-value-based Optimal Computing Budget Allocation (Q-OCBA). The policy relies on maximizing the relative discrepancies among the Q-value estimates. Numerical experiments show superior performances of our exploration strategy than other benchmark policies.
translated by 谷歌翻译
In this paper we develop a theoretical analysis of the performance of sampling-based fitted value iteration (FVI) to solve infinite state-space, discounted-reward Markovian decision processes (MDPs) under the assumption that a generative model of the environment is available. Our main results come in the form of finite-time bounds on the performance of two versions of sampling-based FVI. The convergence rate results obtained allow us to show that both versions of FVI are well behaving in the sense that by using a sufficiently large number of samples for a large class of MDPs, arbitrary good performance can be achieved with high probability. An important feature of our proof technique is that it permits the study of weighted L p -norm performance bounds. As a result, our technique applies to a large class of function-approximation methods (e.g., neural networks, adaptive regression trees, kernel machines, locally weighted learning), and our bounds scale well with the effective horizon of the MDP. The bounds show a dependence on the stochastic stability properties of the MDP: they scale with the discounted-average concentrability of the future-state distributions. They also depend on a new measure of the approximation power of the function space, the inherent Bellman residual, which reflects how well the function space is "aligned" with the dynamics and rewards of the MDP. The conditions of the main result, as well as the concepts introduced in the analysis, are extensively discussed and compared to previous theoretical results. Numerical experiments are used to substantiate the theoretical findings.
translated by 谷歌翻译
我们在无限地平线马尔可夫决策过程中考虑批量(离线)策略学习问题。通过移动健康应用程序的推动,我们专注于学习最大化长期平均奖励的政策。我们为平均奖励提出了一款双重强大估算器,并表明它实现了半导体效率。此外,我们开发了一种优化算法来计算参数化随机策略类中的最佳策略。估计政策的履行是通过政策阶级的最佳平均奖励与估计政策的平均奖励之间的差异来衡量,我们建立了有限样本的遗憾保证。通过模拟研究和促进体育活动的移动健康研究的分析来说明该方法的性能。
translated by 谷歌翻译
我们研究了线性函数近似的政策评估问题,并且目前具有强烈的最优性保证的高效实用算法。我们首先通过证明在这个问题中建立基线的下限来建立基线和随机错误。特别是,我们在与转换内核的静止分布相关联的实例相关规范中证明了Oracle复杂性下限,并使用本地渐近最低限度机械在随机误差中证明依赖于随机误差的实例相关的下限IID观察模型。现有算法未能匹配这些下限中的至少一个:为了说明,我们分析了时间差异学习的方差减少变体,特别是它未能实现Oracle复杂性下限。为了解决这个问题,我们开发了加速,方差减少的快速时间差算法(VRFTD),其同时匹配两个下限,并达到实例 - 最优性的强烈概念。最后,我们将VRFTD算法扩展到Markovian观察的设置,并提供与I.I.D中的实例相关的收敛结果。设置到与链条的混合时间成比例的乘法因子。我们的理论保证最佳的最佳保证是通过数值实验证实的。
translated by 谷歌翻译
Reinforcement learning (RL) is one of the most vibrant research frontiers in machine learning and has been recently applied to solve a number of challenging problems. In this paper, we primarily focus on off-policy evaluation (OPE), one of the most fundamental topics in RL. In recent years, a number of OPE methods have been developed in the statistics and computer science literature. We provide a discussion on the efficiency bound of OPE, some of the existing state-of-the-art OPE methods, their statistical properties and some other related research directions that are currently actively explored.
translated by 谷歌翻译
在标准数据分析框架中,首先收集数据(全部一次),然后进行数据分析。此外,通常认为数据生成过程是外源性的。当数据分析师对数据的生成方式没有影响时,这种方法是自然的。但是,数字技术的进步使公司促进了从数据中学习并同时做出决策。随着这些决定生成新数据,数据分析师(业务经理或算法)也成为数据生成器。这种相互作用会产生一种新型的偏见 - 增强偏见 - 加剧了静态数据分析中的内生性问题。因果推理技术应该被纳入加强学习中以解决此类问题。
translated by 谷歌翻译
A / B测试或在线实验是一种标准的业务策略,可以在制药,技术和传统行业中与旧产品进行比较。在双面市场平台(例如优步)的在线实验中出现了主要挑战,其中只有一个单位接受一系列处理随着时间的推移。在这些实验中,给定时间的治疗会影响当前结果以及未来的结果。本文的目的是引入用于在这些实验中携带A / B测试的加强学习框架,同时表征长期治疗效果。我们所提出的测试程序允许顺序监控和在线更新。它通常适用于不同行业的各种治疗设计。此外,我们系统地研究了我们测试程序的理论特性(例如,尺寸和功率)。最后,我们将框架应用于模拟数据和从技术公司获得的真实数据示例,以说明其在目前的实践中的优势。我们的测试的Python实现是在https://github.com/callmespring/causalrl上找到的。
translated by 谷歌翻译
我们在$ \ Gamma $ -diScounted MDP中使用Polyak-Ruppert平均(A.K.A.,平均Q-Leaning)进行同步Q学习。我们为平均迭代$ \ bar {\ boldsymbol {q}}建立渐近常态。此外,我们展示$ \ bar {\ boldsymbol {q}} _ t $实际上是一个常规的渐近线性(RAL)估计值,用于最佳q-value函数$ \ boldsymbol {q} ^ * $与最有效的影响功能。它意味着平均Q学习迭代在所有RAL估算器之间具有最小的渐近方差。此外,我们为$ \ ell _ {\ infty} $错误$ \ mathbb {e} \ | \ | \ bar {\ boldsymbol {q}} _ t- \ boldsymbol {q} ^ *} ^ *} _ {\ idty} $,显示它与实例相关的下限以及最佳最低限度复杂性下限。作为一个副产品,我们发现Bellman噪音具有var-gaussian坐标,具有方差$ \ mathcal {o}((1- \ gamma)^ {-1})$而不是现行$ \ mathcal {o}((1- \ Gamma)^ { - 2})$根据标准界限奖励假设。子高斯结果有可能提高许多R1算法的样本复杂性。简而言之,我们的理论分析显示平均Q倾斜在统计上有效。
translated by 谷歌翻译
本文关注的是,基于无限视野设置中预采用的观察数据,为目标策略的价值离线构建置信区间。大多数现有作品都假定不存在混淆观察到的动作的未测量变量。但是,在医疗保健和技术行业等实际应用中,这种假设可能会违反。在本文中,我们表明,使用一些辅助变量介导动作对系统动态的影响,目标策略的价值在混杂的马尔可夫决策过程中可以识别。基于此结果,我们开发了一个有效的非政策值估计器,该估计值可用于潜在模型错误指定并提供严格的不确定性定量。我们的方法是通过理论结果,从乘车共享公司获得的模拟和真实数据集证明的。python实施了建议的过程,请访问https://github.com/mamba413/cope。
translated by 谷歌翻译
我们介绍了一种改进政策改进的方法,该方法在基于价值的强化学习(RL)的贪婪方法与基于模型的RL的典型计划方法之间进行了插值。新方法建立在几何视野模型(GHM,也称为伽马模型)的概念上,该模型对给定策略的折现状态验证分布进行了建模。我们表明,我们可以通过仔细的基本策略GHM的仔细组成,而无需任何其他学习,可以评估任何非马尔科夫策略,以固定的概率在一组基本马尔可夫策略之间切换。然后,我们可以将广义政策改进(GPI)应用于此类非马尔科夫政策的收集,以获得新的马尔可夫政策,通常将其表现优于其先驱。我们对这种方法提供了彻底的理论分析,开发了转移和标准RL的应用,并在经验上证明了其对标准GPI的有效性,对充满挑战的深度RL连续控制任务。我们还提供了GHM培训方法的分析,证明了关于先前提出的方法的新型收敛结果,并显示了如何在深度RL设置中稳定训练这些模型。
translated by 谷歌翻译
我们考虑在部分可观察到的马尔可夫决策过程(POMDP)中的违法评估(OPE),其中评估策略仅取决于可观察变量,并且行为策略取决于不可观察的潜在变量。现有的作品无论是假设未测量的混乱,还是专注于观察和状态空间都是表格的设置。因此,这些方法在存在未测量的混淆器的情况下遭受大偏差,或者在具有连续或大观察/状态空间的设置中的大方差。在这项工作中,通过引入将目标策略的价值和观察到的数据分布联系起来,提出了具有潜在混淆的POMDPS的新识别方法。在完全可观察到的MDP中,这些桥接功能将熟悉的值函数和评估与行为策略之间的边际密度比减少。我们接下来提出了用于学习这些桥接功能的最小值估计方法。我们的提案允许一般函数近似,因此适用于具有连续或大观察/状态空间的设置。最后,我们基于这些估计的桥梁功能构建了三种估计,对应于基于价值函数的估计器,边缘化重要性采样估计器和双重稳健的估计器。他们的掺入无血症和渐近性质进行了详细研究。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
我们研究马尔可夫决策过程(MDP)框架中的离线数据驱动的顺序决策问题。为了提高学习政策的概括性和适应性,我们建议通过一套关于在政策诱导的固定分配所在的分发的一套平均奖励来评估每项政策。给定由某些行为策略生成的多个轨迹的预收集数据集,我们的目标是在预先指定的策略类中学习一个强大的策略,可以最大化此集的最小值。利用半参数统计的理论,我们开发了一种统计上有效的策略学习方法,用于估算DE NED强大的最佳政策。在数据集中的总决策点方面建立了达到对数因子的速率最佳遗憾。
translated by 谷歌翻译
With the fast development of big data, it has been easier than before to learn the optimal decision rule by updating the decision rule recursively and making online decisions. We study the online statistical inference of model parameters in a contextual bandit framework of sequential decision-making. We propose a general framework for online and adaptive data collection environment that can update decision rules via weighted stochastic gradient descent. We allow different weighting schemes of the stochastic gradient and establish the asymptotic normality of the parameter estimator. Our proposed estimator significantly improves the asymptotic efficiency over the previous averaged SGD approach via inverse probability weights. We also conduct an optimality analysis on the weights in a linear regression setting. We provide a Bahadur representation of the proposed estimator and show that the remainder term in the Bahadur representation entails a slower convergence rate compared to classical SGD due to the adaptive data collection.
translated by 谷歌翻译
我们研究了随机近似程序,以便基于观察来自ergodic Markov链的长度$ n $的轨迹来求近求解$ d -dimension的线性固定点方程。我们首先表现出$ t _ {\ mathrm {mix}} \ tfrac {n}} \ tfrac {n}} \ tfrac {d}} \ tfrac {d} {n} $的非渐近性界限。$ t _ {\ mathrm {mix $是混合时间。然后,我们证明了一种在适当平均迭代序列上的非渐近实例依赖性,具有匹配局部渐近最小的限制的领先术语,包括对参数$的敏锐依赖(d,t _ {\ mathrm {mix}}) $以高阶术语。我们将这些上限与非渐近Minimax的下限补充,该下限是建立平均SA估计器的实例 - 最优性。我们通过Markov噪声的政策评估导出了这些结果的推导 - 覆盖了所有$ \ lambda \中的TD($ \ lambda $)算法,以便[0,1)$ - 和线性自回归模型。我们的实例依赖性表征为HyperParameter调整的细粒度模型选择程序的设计开放了门(例如,在运行TD($ \ Lambda $)算法时选择$ \ lambda $的值)。
translated by 谷歌翻译
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space. Focusing on a stochastic query model that provides noisy evaluations of the operator, we analyze a variance-reduced stochastic approximation scheme, and establish non-asymptotic bounds for both the operator defect and the estimation error, measured in an arbitrary semi-norm. In contrast to worst-case guarantees, our bounds are instance-dependent, and achieve the local asymptotic minimax risk non-asymptotically. For linear operators, contractivity can be relaxed to multi-step contractivity, so that the theory can be applied to problems like average reward policy evaluation problem in reinforcement learning. We illustrate the theory via applications to stochastic shortest path problems, two-player zero-sum Markov games, as well as policy evaluation and $Q$-learning for tabular Markov decision processes.
translated by 谷歌翻译
我们建议和分析一个强化学习原理,该原理仅在测试功能的用户定义空间沿使用它们的有效性来近似钟声方程。我们专注于使用功能近似的无模型离线RL应用程序,我们利用这一原理来得出置信区间以进行非政策评估,并在规定的策略类别中优化了对策略的优化。我们证明了关于我们的政策优化程序的甲骨文不平等,就任意比较策略的价值和不确定性之间的权衡而言。测试功能空间的不同选择使我们能够解决共同框架中的不同问题。我们表征了使用我们的程序从政策转移到政策数据的效率的丧失,并建立了与过去工作中研究的浓缩性系数的连接。我们深入研究了具有线性函数近似的方法的实施,即使贝尔曼关闭不结束,也可以通过多项式时间实现提供理论保证。
translated by 谷歌翻译