在神经网络中引入稀疏性是一种有效的方法,可以降低其复杂性,同时保持其性能几乎完好无损。在大多数情况下,使用三阶段管道引入稀疏性:1)训练模型以收敛,2)根据某些标准修剪模型,3)微调修剪模型以恢复性能。最后两个步骤通常是迭代执行的,从而导致合理的结果,但也取得了耗时且复杂的过程。在我们的工作中,我们建议摆脱管道的第一步,并在单个修剪训练周期中结合其他两个步骤,从而使模型在修剪时共同学习最佳权重。我们通过介绍一个名为One Cycle Pruning的小说修剪时间表来做到这一点,该时间表从培训开始就开始修剪,直到最后。采用这样的时间表不仅可以更好地执行修剪模型,而且还大大降低了修剪模型所需的培训预算。实验是在多种架构(VGG-16和RESNET-18)和数据集(CIFAR-10,CIFAR-100和CALTECH-101)上进行的,以及相对较高的稀疏值(80%,90%,95%的权重,删除)。我们的结果表明,按固定的培训预算,一环修剪始终优于通常使用的修剪时间表,例如单发修剪,迭代修剪和自动化逐渐修剪。
translated by 谷歌翻译
Network pruning is widely used for reducing the heavy inference cost of deep models in low-resource settings. A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning and fine-tuning. During pruning, according to a certain criterion, redundant weights are pruned and important weights are kept to best preserve the accuracy. In this work, we make several surprising observations which contradict common beliefs. For all state-of-the-art structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable or worse performance than training that model with randomly initialized weights. For pruning algorithms which assume a predefined target network architecture, one can get rid of the full pipeline and directly train the target network from scratch. Our observations are consistent for multiple network architectures, datasets, and tasks, which imply that: 1) training a large, over-parameterized model is often not necessary to obtain an efficient final model, 2) learned "important" weights of the large model are typically not useful for the small pruned model, 3) the pruned architecture itself, rather than a set of inherited "important" weights, is more crucial to the efficiency in the final model, which suggests that in some cases pruning can be useful as an architecture search paradigm. Our results suggest the need for more careful baseline evaluations in future research on structured pruning methods. We also compare with the "Lottery Ticket Hypothesis" (Frankle & Carbin, 2019), and find that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization. * Equal contribution. † Work done while visiting UC Berkeley.
translated by 谷歌翻译
网络修剪是一种广泛使用的技术,用于有效地压缩深神经网络,几乎没有在推理期间在性能下降低。迭代幅度修剪(IMP)是由几种迭代训练和修剪步骤组成的网络修剪的最熟悉的方法之一,其中在修剪后丢失了大量网络的性能,然后在随后的再培训阶段中恢复。虽然常用为基准参考,但经常认为a)通过不将稀疏纳入训练阶段来达到次优状态,b)其全球选择标准未能正确地确定最佳层面修剪速率和c)其迭代性质使它变得缓慢和不竞争。根据最近提出的再培训技术,我们通过严格和一致的实验来调查这些索赔,我们将Impr到培训期间的训练算法进行比较,评估其选择标准的建议修改,并研究实际需要的迭代次数和总培训时间。我们发现IMP与SLR进行再培训,可以优于最先进的修剪期间,没有或仅具有很少的计算开销,即全局幅度选择标准在很大程度上具有更复杂的方法,并且只有几个刷新时期在实践中需要达到大部分稀疏性与IMP的诽谤 - 与性能权衡。我们的目标既可以证明基本的进攻已经可以提供最先进的修剪结果,甚至优于更加复杂或大量参数化方法,也可以为未来的研究建立更加现实但易于可实现的基线。
translated by 谷歌翻译
Pruning refers to the elimination of trivial weights from neural networks. The sub-networks within an overparameterized model produced after pruning are often called Lottery tickets. This research aims to generate winning lottery tickets from a set of lottery tickets that can achieve similar accuracy to the original unpruned network. We introduce a novel winning ticket called Cyclic Overlapping Lottery Ticket (COLT) by data splitting and cyclic retraining of the pruned network from scratch. We apply a cyclic pruning algorithm that keeps only the overlapping weights of different pruned models trained on different data segments. Our results demonstrate that COLT can achieve similar accuracies (obtained by the unpruned model) while maintaining high sparsities. We show that the accuracy of COLT is on par with the winning tickets of Lottery Ticket Hypothesis (LTH) and, at times, is better. Moreover, COLTs can be generated using fewer iterations than tickets generated by the popular Iterative Magnitude Pruning (IMP) method. In addition, we also notice COLTs generated on large datasets can be transferred to small ones without compromising performance, demonstrating its generalizing capability. We conduct all our experiments on Cifar-10, Cifar-100 & TinyImageNet datasets and report superior performance than the state-of-the-art methods.
translated by 谷歌翻译
近年来,深度神经网络在各种应用领域中都有广泛的成功。但是,它们需要重要的计算和内存资源,严重阻碍其部署,特别是在移动设备上或实时应用程序。神经网络通常涉及大量参数,该参数对应于网络的权重。在培训过程中获得的这种参数是用于网络性能的决定因素。但是,它们也非常冗余。修剪方法尤其试图通过识别和移除不相关的重量来减小参数集的大小。在本文中,我们研究了培训策略对修剪效率的影响。考虑和比较了两种培训方式:(1)微调和(2)从头开始。在四个数据集(CIFAR10,CiFAR100,SVHN和CALTECH101)上获得的实验结果和两个不同的CNNS(VGG16和MOBILENET)证明已经在大语料库(例如想象成)上预先培训的网络,然后进行微调特定数据集可以更有效地修剪(高达80%的参数减少),而不是从头开始培训的相同网络。
translated by 谷歌翻译
稀疏性已成为压缩和加速深度神经网络(DNN)的有前途方法之一。在不同类别的稀疏性中,由于其对现代加速器的有效执行,结构化的稀疏性引起了人们的关注。特别是,n:m稀疏性很有吸引力,因为已经有一些硬件加速器架构可以利用某些形式的n:m结构化稀疏性来产生更高的计算效率。在这项工作中,我们专注于N:M的稀疏性,并广泛研究和评估N:M稀疏性的各种培训食谱,以模型准确性和计算成本(FLOPS)之间的权衡(FLOPS)。在这项研究的基础上,我们提出了两种新的基于衰减的修剪方法,即“修剪面膜衰减”和“稀疏结构衰减”。我们的评估表明,这些提出的方法始终提供最新的(SOTA)模型精度,可与非结构化的稀疏性相当,在基于变压器的模型上用于翻译任务。使用新培训配方的稀疏模型准确性的提高是以总训练计算(FLOP)边际增加的成本。
translated by 谷歌翻译
现代深度神经网络往往太大而无法在许多实际情况下使用。神经网络修剪是降低这种模型的大小的重要技术和加速推断。Gibbs修剪是一种表达和设计神经网络修剪方法的新框架。结合统计物理和随机正则化方法的方法,它可以同时培训和修剪网络,使得学习的权重和修剪面膜彼此很好地适应。它可用于结构化或非结构化修剪,我们为每个提出了许多特定方法。我们将拟议的方法与许多当代神经网络修剪方法进行比较,发现Gibbs修剪优于它们。特别是,我们通过CIFAR-10数据集来实现修剪Reset-56的新型最先进的结果。
translated by 谷歌翻译
在机器学习中,人工神经网络(ANN)是一种非常强大的工具,广泛用于许多应用程序。通常,所选的(深)架构包括许多层,因此包括大量参数,这使培训,存储和推理变得昂贵。这激发了有关将原始网络压缩为较小网络的一系列研究,而不会过分牺牲性能。在许多提出的压缩方法中,最受欢迎的方法之一是\ emph {Pruning},该方法的整个元素(链接,节点,通道,\ ldots)和相应的权重删除。由于该问题的性质本质上是组合的(要修剪的要素,什么不是),因此我们提出了一种基于操作研究工具的新修剪方法。我们从为该问题的天然混合组编程模型开始,然后使用透视化重新制作技术来增强其持续放松。从该重新制定中投射指标变量产生了一个新的正则化术语,我们称之为结构化的正则化,从而导致初始体系结构的结构化修剪。我们测试了应用于CIFAR-10,CIFAR-100和Imagenet数据集的一些重新NET架构,获得了竞争性能W.R.T.
translated by 谷歌翻译
FerateAi是一个基于Pytorch的图书馆,旨在促进深度神经网络压缩技术的利用,例如稀疏,修剪,知识蒸馏或正则化。该库的构建是为了实现快速实施和实验。尤其是,压缩技术是利用Fastai和Pytorch Lightning等库的回调系统来带来用户友好和高级API。 Forperai的主要资产是其轻巧但功能强大,使用的简单性。确实,由于它是以非常细粒度的方式开发的,因此用户可以使用不同的参数组合来创建数千个独特的实验。在本文中,我们着重于代表图书馆的核心的Perastai的稀疏功能。在forperai中对神经网络进行稀疏只需要在传统培训循环中进行单一的代码,但允许执行最先进的技术,例如彩票票证假设实验
translated by 谷歌翻译
Neural network pruning-the task of reducing the size of a network by removing parameters-has been the subject of a great deal of work in recent years. We provide a meta-analysis of the literature, including an overview of approaches to pruning and consistent findings in the literature. After aggregating results across 81 papers and pruning hundreds of models in controlled conditions, our clearest finding is that the community suffers from a lack of standardized benchmarks and metrics. This deficiency is substantial enough that it is hard to compare pruning techniques to one another or determine how much progress the field has made over the past three decades. To address this situation, we identify issues with current practices, suggest concrete remedies, and introduce ShrinkBench, an open-source framework to facilitate standardized evaluations of pruning methods. We use ShrinkBench to compare various pruning techniques and show that its comprehensive evaluation can prevent common pitfalls when comparing pruning methods.
translated by 谷歌翻译
The deployment of deep convolutional neural networks (CNNs) in many real world applications is largely hindered by their high computational cost. In this paper, we propose a novel learning scheme for CNNs to simultaneously 1) reduce the model size; 2) decrease the run-time memory footprint; and 3) lower the number of computing operations, without compromising accuracy. This is achieved by enforcing channel-level sparsity in the network in a simple but effective way. Different from many existing approaches, the proposed method directly applies to modern CNN architectures, introduces minimum overhead to the training process, and requires no special software/hardware accelerators for the resulting models. We call our approach network slimming, which takes wide and large networks as input models, but during training insignificant channels are automatically identified and pruned afterwards, yielding thin and compact models with comparable accuracy. We empirically demonstrate the effectiveness of our approach with several state-of-the-art CNN models, including VGGNet, ResNet and DenseNet, on various image classification datasets. For VGGNet, a multi-pass version of network slimming gives a 20× reduction in model size and a 5× reduction in computing operations.
translated by 谷歌翻译
网络修剪是一种有效的方法,可以通过可接受的性能妥协降低网络复杂性。现有研究通过耗时的重量调谐或具有扩展宽度的网络的复杂搜索来实现神经网络的稀疏性,这极大地限制了网络修剪的应用。在本文中,我们表明,在没有权重调谐的情况下,高性能和稀疏的子网被称为“彩票奖线”,存在于具有膨胀宽度的预先训练的模型中。例如,我们获得了一个只有10%参数的彩票奖金,仍然达到了原始密度Vggnet-19的性能,而无需对CiFar-10的预先训练的重量进行任何修改。此外,我们观察到,来自许多现有修剪标准的稀疏面具与我们的彩票累积的搜索掩码具有高重叠,其中,基于幅度的修剪导致与我们的最相似的掩模。根据这种洞察力,我们使用基于幅度的修剪初始化我们的稀疏掩模,导致彩票累积搜索至少3倍降低,同时实现了可比或更好的性能。具体而言,我们的幅度基彩票奖学金在Reset-50中除去90%的重量,而在ImageNet上仅使用10个搜索时期可以轻松获得超过70%的前1个精度。我们的代码可在https://github.com/zyxxmu/lottery-jackpots获得。
translated by 谷歌翻译
Many applications require sparse neural networks due to space or inference time restrictions. There is a large body of work on training dense networks to yield sparse networks for inference, but this limits the size of the largest trainable sparse model to that of the largest trainable dense model. In this paper we introduce a method to train sparse neural networks with a fixed parameter count and a fixed computational cost throughout training, without sacrificing accuracy relative to existing dense-tosparse training methods. Our method updates the topology of the sparse network during training by using parameter magnitudes and infrequent gradient calculations. We show that this approach requires fewer floating-point operations (FLOPs) to achieve a given level of accuracy compared to prior techniques. We demonstrate state-of-the-art sparse training results on a variety of networks and datasets, including ResNet-50, MobileNets on Imagenet-2012, and RNNs on WikiText-103. Finally, we provide some insights into why allowing the topology to change during the optimization can overcome local minima encountered when the topology remains static * .
translated by 谷歌翻译
The success of CNNs in various applications is accompanied by a significant increase in the computation and parameter storage costs. Recent efforts toward reducing these overheads involve pruning and compressing the weights of various layers without hurting original accuracy. However, magnitude-based pruning of weights reduces a significant number of parameters from the fully connected layers and may not adequately reduce the computation costs in the convolutional layers due to irregular sparsity in the pruned networks. We present an acceleration method for CNNs, where we prune filters from CNNs that are identified as having a small effect on the output accuracy. By removing whole filters in the network together with their connecting feature maps, the computation costs are reduced significantly. In contrast to pruning weights, this approach does not result in sparse connectivity patterns. Hence, it does not need the support of sparse convolution libraries and can work with existing efficient BLAS libraries for dense matrix multiplications. We show that even simple filter pruning techniques can reduce inference costs for VGG-16 by up to 34% and ResNet-110 by up to 38% on CIFAR10 while regaining close to the original accuracy by retraining the networks.
translated by 谷歌翻译
在物联网(IoT)支持的网络边缘(IOT)上的人工智能(AI)的最新进展已通过启用低延期性和计算效率来实现多种应用程序(例如智能农业,智能医院和智能工厂)的优势情报。但是,部署最先进的卷积神经网络(CNN),例如VGG-16和在资源约束的边缘设备上的重新连接,由于其大量参数和浮点操作(Flops),因此实际上是不可行的。因此,将网络修剪作为一种模型压缩的概念正在引起注意在低功率设备上加速CNN。结构化或非结构化的最先进的修剪方法都不认为卷积层表现出的复杂性的不同基本性质,并遵循训练放回训练的管道,从而导致其他计算开销。在这项工作中,我们通过利用CNN的固有层层级复杂性来提出一种新颖和计算高效的修剪管道。与典型的方法不同,我们提出的复杂性驱动算法根据其对整体网络复杂性的贡献选择了特定层用于滤波器。我们遵循一个直接训练修剪模型并避免计算复杂排名和微调步骤的过程。此外,我们定义了修剪的三种模式,即参数感知(PA),拖网(FA)和内存感知(MA),以引入CNN的多功能压缩。我们的结果表明,我们的方法在准确性和加速方面的竞争性能。最后,我们提出了不同资源和准确性之间的权衡取舍,这对于开发人员在资源受限的物联网环境中做出正确的决策可能会有所帮助。
translated by 谷歌翻译
Pruning large neural networks while maintaining their performance is often desirable due to the reduced space and time complexity. In existing methods, pruning is done within an iterative optimization procedure with either heuristically designed pruning schedules or additional hyperparameters, undermining their utility. In this work, we present a new approach that prunes a given network once at initialization prior to training. To achieve this, we introduce a saliency criterion based on connection sensitivity that identifies structurally important connections in the network for the given task. This eliminates the need for both pretraining and the complex pruning schedule while making it robust to architecture variations. After pruning, the sparse network is trained in the standard way. Our method obtains extremely sparse networks with virtually the same accuracy as the reference network on the MNIST, CIFAR-10, and Tiny-ImageNet classification tasks and is broadly applicable to various architectures including convolutional, residual and recurrent networks. Unlike existing methods, our approach enables us to demonstrate that the retained connections are indeed relevant to the given task.
translated by 谷歌翻译
在过去几年中,神经字符动画已经出现并提供了一种动画虚拟字符的自动方法。它们的运动由神经网络合成。用用户定义的控制信号实时控制该运动也是视频游戏中的重要任务。基于全连接层(MLP)和专家混合物(MOE)的解决方案已经令人印象深刻的导致产生和控制环境与虚拟字符之间的近距离相互作用的各种运动。然而,完全连接层的主要缺点是它们的计算和内存成本,可能导致子优化的解决方案。在这项工作中,我们在交互式角色动画的背景下应用修剪算法以压缩MLP-Moe神经网络,这降低了其参数的数量,并在该加速度和合成的运动质量之间进行权衡加速其计算时间。这项工作表明,通过相同数量的专家和参数,修剪模型产生的运动伪像比密集模型更少,并且学习的高级运动功能对于两者相似
translated by 谷歌翻译
深度神经网络已用于多种成功的应用中。但是,由于包含数百万个参数,它们的高度复杂性质导致在延迟需求低的管道中部署期间有问题。结果,更希望获得在推理期间具有相同性能的轻型神经网络。在这项工作中,我们提出了一种基于重量的修剪方法,其中权重根据以前的迭代势头逐渐修剪。神经网络的每个层都根据其相对稀疏性分配了一个重要性值,然后在先前迭代中的重量幅度分配。我们在Alexnet,VGG16和Resnet50等网络上评估了我们的方法,其中包括图像分类数据集,例如CIFAR-10和CIFAR-100。我们发现,在准确性和压缩比方面,结果优于先前的方法。我们的方法能够在两个数据集上获得同一降解的相同降解的15%压缩。
translated by 谷歌翻译
网络的稀疏性主要是由于其降低网络复杂性的能力而受欢迎。广泛的研究挖掘了梯度驱动的稀疏性。通常,这些方法是在体重独立性前提下构建的,但是与重量受到相互影响的事实相反。因此,他们的性能仍有待改进。在本文中,我们建议通过解决这种独立悖论来进一步优化梯度驱动的稀疏性(OPTG)。我们的动机来自最近对超级策略训练的进步,该进步表明,稀疏子网可以通过简单地更新掩码值而无需修改任何权重的情况下将其位于随机初始化的网络中。我们证明,超级手机训练是积累重量梯度,并可以部分解决独立悖论。因此,OPTG将Supermask训练集成到梯度驱动的稀疏度中,并且设计了专门的掩模优化器来解决独立悖论。实验表明,OPTG可以很好地超越许多现有的最先进的竞争对手。我们的代码可在\ url {https://github.com/zyxxmu/optg}上找到。
translated by 谷歌翻译
修剪是稀疏深神经网络的任务,最近受到了越来越多的关注。尽管最先进的修剪方法提取了高度稀疏的模型,但它们忽略了两个主要挑战:(1)寻找这些稀疏模型的过程通常非常昂贵; (2)非结构化的修剪在GPU记忆,训练时间或碳排放方面没有提供好处。我们提出了通过梯度流量保存(早期CROP)提出的早期压缩,该压缩在训练挑战(1)的培训(1)中有效提取最先进的稀疏模型,并且可以以结构化的方式应用来应对挑战(2)。这使我们能够在商品GPU上训练稀疏的网络,该商品GPU的密集版本太大,从而节省了成本并减少了硬件要求。我们从经验上表明,早期杂交的表现优于许多任务(包括分类,回归)和域(包括计算机视觉,自然语言处理和增强学习)的丰富基线。早期杂交导致准确性与密集训练相当,同时超过修剪基线。
translated by 谷歌翻译