Pruning refers to the elimination of trivial weights from neural networks. The sub-networks within an overparameterized model produced after pruning are often called Lottery tickets. This research aims to generate winning lottery tickets from a set of lottery tickets that can achieve similar accuracy to the original unpruned network. We introduce a novel winning ticket called Cyclic Overlapping Lottery Ticket (COLT) by data splitting and cyclic retraining of the pruned network from scratch. We apply a cyclic pruning algorithm that keeps only the overlapping weights of different pruned models trained on different data segments. Our results demonstrate that COLT can achieve similar accuracies (obtained by the unpruned model) while maintaining high sparsities. We show that the accuracy of COLT is on par with the winning tickets of Lottery Ticket Hypothesis (LTH) and, at times, is better. Moreover, COLTs can be generated using fewer iterations than tickets generated by the popular Iterative Magnitude Pruning (IMP) method. In addition, we also notice COLTs generated on large datasets can be transferred to small ones without compromising performance, demonstrating its generalizing capability. We conduct all our experiments on Cifar-10, Cifar-100 & TinyImageNet datasets and report superior performance than the state-of-the-art methods.
translated by 谷歌翻译
Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, decreasing storage requirements and improving computational performance of inference without compromising accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to train from the start, which would similarly improve training performance.We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of training effectively. Based on these results, we articulate the lottery ticket hypothesis: dense, randomly-initialized, feed-forward networks contain subnetworks (winning tickets) that-when trained in isolationreach test accuracy comparable to the original network in a similar number of iterations. The winning tickets we find have won the initialization lottery: their connections have initial weights that make training particularly effective.We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher test accuracy.
translated by 谷歌翻译
Network pruning is widely used for reducing the heavy inference cost of deep models in low-resource settings. A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning and fine-tuning. During pruning, according to a certain criterion, redundant weights are pruned and important weights are kept to best preserve the accuracy. In this work, we make several surprising observations which contradict common beliefs. For all state-of-the-art structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable or worse performance than training that model with randomly initialized weights. For pruning algorithms which assume a predefined target network architecture, one can get rid of the full pipeline and directly train the target network from scratch. Our observations are consistent for multiple network architectures, datasets, and tasks, which imply that: 1) training a large, over-parameterized model is often not necessary to obtain an efficient final model, 2) learned "important" weights of the large model are typically not useful for the small pruned model, 3) the pruned architecture itself, rather than a set of inherited "important" weights, is more crucial to the efficiency in the final model, which suggests that in some cases pruning can be useful as an architecture search paradigm. Our results suggest the need for more careful baseline evaluations in future research on structured pruning methods. We also compare with the "Lottery Ticket Hypothesis" (Frankle & Carbin, 2019), and find that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization. * Equal contribution. † Work done while visiting UC Berkeley.
translated by 谷歌翻译
在神经网络中引入稀疏性是一种有效的方法,可以降低其复杂性,同时保持其性能几乎完好无损。在大多数情况下,使用三阶段管道引入稀疏性:1)训练模型以收敛,2)根据某些标准修剪模型,3)微调修剪模型以恢复性能。最后两个步骤通常是迭代执行的,从而导致合理的结果,但也取得了耗时且复杂的过程。在我们的工作中,我们建议摆脱管道的第一步,并在单个修剪训练周期中结合其他两个步骤,从而使模型在修剪时共同学习最佳权重。我们通过介绍一个名为One Cycle Pruning的小说修剪时间表来做到这一点,该时间表从培训开始就开始修剪,直到最后。采用这样的时间表不仅可以更好地执行修剪模型,而且还大大降低了修剪模型所需的培训预算。实验是在多种架构(VGG-16和RESNET-18)和数据集(CIFAR-10,CIFAR-100和CALTECH-101)上进行的,以及相对较高的稀疏值(80%,90%,95%的权重,删除)。我们的结果表明,按固定的培训预算,一环修剪始终优于通常使用的修剪时间表,例如单发修剪,迭代修剪和自动化逐渐修剪。
translated by 谷歌翻译
深度神经网络(DNN)在解决许多真实问题方面都有效。较大的DNN模型通常表现出更好的质量(例如,精度,精度),但它们的过度计算会导致长期推理时间。模型稀疏可以降低计算和内存成本,同时保持模型质量。大多数现有的稀疏算法是单向移除的重量,而其他人则随机或贪婪地探索每层进行修剪的小权重子集。这些算法的局限性降低了可实现的稀疏性水平。此外,许多算法仍然需要预先训练的密集模型,因此遭受大的内存占地面积。在本文中,我们提出了一种新颖的预定生长和修剪(间隙)方法,而无需预先培训密集模型。它通过反复生长一个层次的层来解决以前的作品的缺点,然后在一些训练后修剪回到稀疏。实验表明,使用所提出的方法修剪模型匹配或击败高度优化的密集模型的质量,在各种任务中以80%的稀疏度,例如图像分类,客观检测,3D对象分段和翻译。它们还优于模型稀疏的其他最先进的(SOTA)方法。作为一个例子,通过间隙获得的90%不均匀的稀疏resnet-50模型在想象中实现了77.9%的前1个精度,提高了先前的SOTA结果1.5%。所有代码将公开发布。
translated by 谷歌翻译
现代深度神经网络需要大量的计算时间和训练和部署的功率,这限制了它们在边缘设备上的使用。受彩票票证假设中的迭代重量修剪的启发,我们提出了Dropnet,这是一种迭代修剪方法,可修剪节点/过滤器以降低网络复杂性。Dropnet迭代删除所有训练样本中平均激活值最低的节点/过滤器。从经验上讲,我们表明Dropnet在各种情况下都具有强大的功能,包括使用MNIST,CIFAR-10和Tiny Imagenet数据集,包括MLP和CNN。我们表明,可以去除多达90%的节点/过滤器,而不会出现任何明显的准确性损失。最终修剪的网络即使在重新定位权重和偏见的情况下也表现良好。Dropnet也具有与Oracle相似的精度,该甲骨文一次贪婪地去除节点/过滤器,以最大程度地减少训练损失,从而突出其有效性。
translated by 谷歌翻译
修剪是稀疏深神经网络的任务,最近受到了越来越多的关注。尽管最先进的修剪方法提取了高度稀疏的模型,但它们忽略了两个主要挑战:(1)寻找这些稀疏模型的过程通常非常昂贵; (2)非结构化的修剪在GPU记忆,训练时间或碳排放方面没有提供好处。我们提出了通过梯度流量保存(早期CROP)提出的早期压缩,该压缩在训练挑战(1)的培训(1)中有效提取最先进的稀疏模型,并且可以以结构化的方式应用来应对挑战(2)。这使我们能够在商品GPU上训练稀疏的网络,该商品GPU的密集版本太大,从而节省了成本并减少了硬件要求。我们从经验上表明,早期杂交的表现优于许多任务(包括分类,回归)和域(包括计算机视觉,自然语言处理和增强学习)的丰富基线。早期杂交导致准确性与密集训练相当,同时超过修剪基线。
translated by 谷歌翻译
网络修剪是一种广泛使用的技术,用于有效地压缩深神经网络,几乎没有在推理期间在性能下降低。迭代幅度修剪(IMP)是由几种迭代训练和修剪步骤组成的网络修剪的最熟悉的方法之一,其中在修剪后丢失了大量网络的性能,然后在随后的再培训阶段中恢复。虽然常用为基准参考,但经常认为a)通过不将稀疏纳入训练阶段来达到次优状态,b)其全球选择标准未能正确地确定最佳层面修剪速率和c)其迭代性质使它变得缓慢和不竞争。根据最近提出的再培训技术,我们通过严格和一致的实验来调查这些索赔,我们将Impr到培训期间的训练算法进行比较,评估其选择标准的建议修改,并研究实际需要的迭代次数和总培训时间。我们发现IMP与SLR进行再培训,可以优于最先进的修剪期间,没有或仅具有很少的计算开销,即全局幅度选择标准在很大程度上具有更复杂的方法,并且只有几个刷新时期在实践中需要达到大部分稀疏性与IMP的诽谤 - 与性能权衡。我们的目标既可以证明基本的进攻已经可以提供最先进的修剪结果,甚至优于更加复杂或大量参数化方法,也可以为未来的研究建立更加现实但易于可实现的基线。
translated by 谷歌翻译
当前的深神经网络(DNN)被过度参数化,并在推断每个任务期间使用其大多数神经元连接。然而,人的大脑开发了针对不同任务的专门区域,并通过其神经元连接的一小部分进行推断。我们提出了一种迭代修剪策略,引入了一个简单的重要性评分度量度量,该指标可以停用不重要的连接,解决DNN中的过度参数化并调节射击模式。目的是找到仍然能够以可比精度解决给定任务的最小连接,即更简单的子网。我们在MNIST上实现了LENET体系结构的可比性能,并且与CIFAR-10/100和Tiny-ImageNet上的VGG和Resnet架构的最先进算法相比,参数压缩的性能明显更高。我们的方法对于考虑到ADAM和SGD的两个不同优化器也表现良好。该算法并非旨在在考虑当前的硬件和软件实现时最小化失败,尽管与最新技术相比,该算法的性能合理。
translated by 谷歌翻译
修剪技术可全面使用图像分类压缩卷积神经网络(CNN)。但是,大多数修剪方法需要一个经过良好训练的模型,以提供有用的支持参数,例如C1-核心,批处理值和梯度信息,如果预训练的模型的参数为,这可能会导致过滤器评估的不一致性不太优化。因此,我们提出了一种基于敏感性的方法,可以通过为原始模型增加额外的损害来评估每一层的重要性。由于准确性的性能取决于参数在所有层而不是单个参数中的分布,因此基于灵敏度的方法将对参数的更新具有鲁棒性。也就是说,我们可以获得对不完美训练和完全训练的模型之间每个卷积层的相似重要性评估。对于CIFAR-10上的VGG-16,即使原始模型仅接受50个时期训练,我们也可以对层的重要性进行相同的评估,并在对模型进行充分训练时的结果。然后,我们将通过量化的灵敏度从每一层中删除过滤器。我们基于敏感性的修剪框架在VGG-16,分别具有CIFAR-10,MNIST和CIFAR-100的VGG-16上有效验证。
translated by 谷歌翻译
彩票票证假设(LTH)表明,密集的模型包含高度稀疏的子网(即获奖门票),可以隔离培训以完全准确。尽管做出了许多激动人心的努力,但仍有一个“常识”很少受到挑战:通过迭代级修剪(IMP)发现了一张获胜的票,因此由此产生的修剪子网仅具有非结构化的稀疏性。这一差距限制了在实践中赢得门票的吸引力,因为高度不规则的稀疏模式在硬件上加速的挑战是挑战性的。同时,直接将结构化修剪替换为非结构化的修剪,以更严重地损害绩效,并且通常无法找到获胜的票。在本文中,我们证明了第一个积极的结果是,总体上可以有效地找到结构上稀疏的获胜票。核心思想是在每一轮(非结构化)IMP之后附加“后处理技术”,以实施结构稀疏的形成。具体而言,我们首先在某些被认为很重要的通道中“重新填充”修剪元素,然后“重新组”非零元素以创建灵活的群体结构模式。我们确定的渠道和团体结构子网都赢得了彩票,并以现有硬件很容易支持的大量推理加速。广泛的实验,在多个网络骨架的不同数据集上进行,一致验证了我们的建议,表明LTH的硬件加速障碍现在已被删除。具体而言,结构上的获胜票最多可获得{64.93%,64.84%,60.23%}的运行时间节省,以{36%〜80%,74%,58%}的稀疏性在{Cifar,cifar,tiny-imageNet,imageNet}上保持可比较的精度。代码在https://github.com/vita-group/structure-lth上。
translated by 谷歌翻译
深度神经网络已用于多种成功的应用中。但是,由于包含数百万个参数,它们的高度复杂性质导致在延迟需求低的管道中部署期间有问题。结果,更希望获得在推理期间具有相同性能的轻型神经网络。在这项工作中,我们提出了一种基于重量的修剪方法,其中权重根据以前的迭代势头逐渐修剪。神经网络的每个层都根据其相对稀疏性分配了一个重要性值,然后在先前迭代中的重量幅度分配。我们在Alexnet,VGG16和Resnet50等网络上评估了我们的方法,其中包括图像分类数据集,例如CIFAR-10和CIFAR-100。我们发现,在准确性和压缩比方面,结果优于先前的方法。我们的方法能够在两个数据集上获得同一降解的相同降解的15%压缩。
translated by 谷歌翻译
Many applications require sparse neural networks due to space or inference time restrictions. There is a large body of work on training dense networks to yield sparse networks for inference, but this limits the size of the largest trainable sparse model to that of the largest trainable dense model. In this paper we introduce a method to train sparse neural networks with a fixed parameter count and a fixed computational cost throughout training, without sacrificing accuracy relative to existing dense-tosparse training methods. Our method updates the topology of the sparse network during training by using parameter magnitudes and infrequent gradient calculations. We show that this approach requires fewer floating-point operations (FLOPs) to achieve a given level of accuracy compared to prior techniques. We demonstrate state-of-the-art sparse training results on a variety of networks and datasets, including ResNet-50, MobileNets on Imagenet-2012, and RNNs on WikiText-103. Finally, we provide some insights into why allowing the topology to change during the optimization can overcome local minima encountered when the topology remains static * .
translated by 谷歌翻译
现代深度神经网络往往太大而无法在许多实际情况下使用。神经网络修剪是降低这种模型的大小的重要技术和加速推断。Gibbs修剪是一种表达和设计神经网络修剪方法的新框架。结合统计物理和随机正则化方法的方法,它可以同时培训和修剪网络,使得学习的权重和修剪面膜彼此很好地适应。它可用于结构化或非结构化修剪,我们为每个提出了许多特定方法。我们将拟议的方法与许多当代神经网络修剪方法进行比较,发现Gibbs修剪优于它们。特别是,我们通过CIFAR-10数据集来实现修剪Reset-56的新型最先进的结果。
translated by 谷歌翻译
转移学习是一种经典范式,通过该范式,在大型“上游”数据集上佩戴的模型适于在“下游”专业数据集中产生良好的结果。通常,据了解,“上游”数据集上的更准确的模型将提供更好的转移精度“下游”。在这项工作中,我们在想象的神经网络(CNNS)的背景下对这种现象进行了深入的调查,这些现象已经在想象的数据集上训练的情况下被修剪 - 这是通过缩小它们的连接来压缩。具体地,我们考虑使用通过应用几种最先进的修剪方法而获得的非结构化修剪模型的转移,包括基于幅度的,二阶,重新增长和正规化方法,在12个标准转移任务的上下文中。简而言之,我们的研究表明,即使在高稀稀物质,稀疏的型号也可以匹配或甚至优于致密模型的转移性能,并且在此操作时,可以导致显着的推论甚至培训加速度。与此同时,我们观察和分析不同修剪方法行为的显着差异。
translated by 谷歌翻译
修剪深度神经网络的现有方法专注于去除训练有素的网络的不必要参数,然后微调模型,找到恢复训练模型的初始性能的良好解决方案。与其他作品不同,我们的方法特别注意通过修剪神经元的压缩模型和推理计算时间的解决方案的质量。通过探索Hessian的光谱半径,所提出的算法通过探索Hessian的光谱半径来指示压缩模型的参数,这导致了更好地推广了未经看涨的数据。此外,该方法不适用于预先训练的网络,并同时执行训练和修剪。我们的结果表明,它改善了神经元压缩的最先进的结果。该方法能够在不同神经网络模型上实现具有小精度下降的非常小的网络。
translated by 谷歌翻译
Neural network pruning-the task of reducing the size of a network by removing parameters-has been the subject of a great deal of work in recent years. We provide a meta-analysis of the literature, including an overview of approaches to pruning and consistent findings in the literature. After aggregating results across 81 papers and pruning hundreds of models in controlled conditions, our clearest finding is that the community suffers from a lack of standardized benchmarks and metrics. This deficiency is substantial enough that it is hard to compare pruning techniques to one another or determine how much progress the field has made over the past three decades. To address this situation, we identify issues with current practices, suggest concrete remedies, and introduce ShrinkBench, an open-source framework to facilitate standardized evaluations of pruning methods. We use ShrinkBench to compare various pruning techniques and show that its comprehensive evaluation can prevent common pitfalls when comparing pruning methods.
translated by 谷歌翻译
人们通常认为,修剪网络不仅会降低深网的计算成本,而且还可以通过降低模型容量来防止过度拟合。但是,我们的工作令人惊讶地发现,网络修剪有时甚至会加剧过度拟合。我们报告了出乎意料的稀疏双后裔现象,随着我们通过网络修剪增加模型稀疏性,首先测试性能变得更糟(由于过度拟合),然后变得更好(由于过度舒适),并且终于变得更糟(由于忘记了有用的有用信息)。尽管最近的研究集中在模型过度参数化方面,但他们未能意识到稀疏性也可能导致双重下降。在本文中,我们有三个主要贡献。首先,我们通过广泛的实验报告了新型的稀疏双重下降现象。其次,对于这种现象,我们提出了一种新颖的学习距离解释,即$ \ ell_ {2} $稀疏模型的学习距离(从初始化参数到最终参数)可能与稀疏的双重下降曲线良好相关,并更好地反映概括比最小平坦。第三,在稀疏的双重下降的背景下,彩票票假设中的获胜票令人惊讶地并不总是赢。
translated by 谷歌翻译
Pruning large neural networks while maintaining their performance is often desirable due to the reduced space and time complexity. In existing methods, pruning is done within an iterative optimization procedure with either heuristically designed pruning schedules or additional hyperparameters, undermining their utility. In this work, we present a new approach that prunes a given network once at initialization prior to training. To achieve this, we introduce a saliency criterion based on connection sensitivity that identifies structurally important connections in the network for the given task. This eliminates the need for both pretraining and the complex pruning schedule while making it robust to architecture variations. After pruning, the sparse network is trained in the standard way. Our method obtains extremely sparse networks with virtually the same accuracy as the reference network on the MNIST, CIFAR-10, and Tiny-ImageNet classification tasks and is broadly applicable to various architectures including convolutional, residual and recurrent networks. Unlike existing methods, our approach enables us to demonstrate that the retained connections are indeed relevant to the given task.
translated by 谷歌翻译
在物联网(IoT)支持的网络边缘(IOT)上的人工智能(AI)的最新进展已通过启用低延期性和计算效率来实现多种应用程序(例如智能农业,智能医院和智能工厂)的优势情报。但是,部署最先进的卷积神经网络(CNN),例如VGG-16和在资源约束的边缘设备上的重新连接,由于其大量参数和浮点操作(Flops),因此实际上是不可行的。因此,将网络修剪作为一种模型压缩的概念正在引起注意在低功率设备上加速CNN。结构化或非结构化的最先进的修剪方法都不认为卷积层表现出的复杂性的不同基本性质,并遵循训练放回训练的管道,从而导致其他计算开销。在这项工作中,我们通过利用CNN的固有层层级复杂性来提出一种新颖和计算高效的修剪管道。与典型的方法不同,我们提出的复杂性驱动算法根据其对整体网络复杂性的贡献选择了特定层用于滤波器。我们遵循一个直接训练修剪模型并避免计算复杂排名和微调步骤的过程。此外,我们定义了修剪的三种模式,即参数感知(PA),拖网(FA)和内存感知(MA),以引入CNN的多功能压缩。我们的结果表明,我们的方法在准确性和加速方面的竞争性能。最后,我们提出了不同资源和准确性之间的权衡取舍,这对于开发人员在资源受限的物联网环境中做出正确的决策可能会有所帮助。
translated by 谷歌翻译