基于神经网络的高维部分微分方程(PDE)的数值解具有令人兴奋的发展。本文推出了Barron空间中$ -dimimensional二阶椭圆PDE的解决方案的复杂性估计,这是一组函数,即承认某些参数脊函数的积分与参数上的概率测量。我们证明在一些适当的假设中,如果椭圆PDE的系数和源期限位于Barron空间中,则PDE的解决方案是$ \ epsilon $ -close关于$ h ^ 1 $ norm到Barron功能。此外,我们证明了这种近似解决方案的Barron标准的维度显式范围,这取决于大多数多项式在PDE的维度$ D $上。作为复杂性估计的直接后果,通过双层神经网络,PDE的解决方案可以通过双层神经网络在任何有界面的神经网络上近似于尺寸显式收敛速度的$ H ^ 1 $常态。
translated by 谷歌翻译
在本文中,我们建立了一个神经网络以近似功能,该功能是从无限尺寸空间到有限维空间的地图。神经网络的近似误差为$ O(1/\ sqrt {m})$,其中$ m $是网络的大小,它克服了维度的诅咒。近似值的关键思想是定义功能的巴隆光谱空间。
translated by 谷歌翻译
在本文中,我们研究了使用深丽升方法(DRM)和物理信息的神经网络(Pinns)从随机样品求解椭圆局部微分方程(PDE)的深度学习技术的统计限制。为了简化问题,我们专注于原型椭圆PDE:SCHR \“odinginger方程,具有零的Dirichlet边界条件,其在量子 - 机械系统中具有广泛的应用。我们为两种方法建立了上下界,通过快速速率泛化绑定并发地改善了这个问题的上限。我们发现当前的深ritz方法是次优的,提出修改版本。我们还证明了Pinn和DRM的修改版本可以实现Minimax SoboLev空间的最佳限制。经验上,近期工作表明,根据权力法,我们提供了培训训练的深层模型精度,我们提供了计算实验,以显示对深PDE求解器的尺寸依赖权力法的类似行为。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
高维偏微分方程(PDE)是一种流行的数学建模工具,其应用从财务到计算化学不等。但是,用于解决这些PDE的标准数值技术通常受维度的诅咒影响。在这项工作中,我们应对这一挑战,同时着重于在具有周期性边界条件的高维域上定义的固定扩散方程。受到高维度稀疏功能近似进展的启发,我们提出了一种称为压缩傅立叶搭配的新方法。结合了压缩感应和光谱搭配的想法,我们的方法取代了结构化置式网格用蒙特卡洛采样的使用,并采用了稀疏的恢复技术,例如正交匹配的追踪和$ \ ell^1 $最小化,以近似PDE的傅立叶系数解决方案。我们进行了严格的理论分析,表明所提出的方法的近似误差与最佳$ s $ term近似(相对于傅立叶基础)与解决方案相当。我们的分析使用了最近引入的随机采样框架,我们的分析表明,在足够条件下,根据扩散系数的规律性,压缩傅立叶搭配方法相对于搭配点的数量减轻了维数的诅咒。我们还提出了数值实验,以说明稀疏和可压缩溶液近似方法的准确性和稳定性。
translated by 谷歌翻译
我们因与Relu神经网络的参数双曲标量保护定律的近似值所产生的误差得出了严格的界限。我们表明,通过克服维度诅咒的relu神经网络,可以使近似误差尽可能小。此外,我们在训练误差,训练样本数量和神经网络大小方面提供了明确的上限。理论结果通过数值实验说明。
translated by 谷歌翻译
High-dimensional PDEs have been a longstanding computational challenge. We propose to solve highdimensional PDEs by approximating the solution with a deep neural network which is trained to satisfy the differential operator, initial condition, and boundary conditions. Our algorithm is meshfree, which is key since meshes become infeasible in higher dimensions. Instead of forming a mesh, the neural network is trained on batches of randomly sampled time and space points. The algorithm is tested on a class of high-dimensional free boundary PDEs, which we are able to accurately solve in up to 200 dimensions. The algorithm is also tested on a high-dimensional Hamilton-Jacobi-Bellman PDE and Burgers' equation. The deep learning algorithm approximates the general solution to the Burgers' equation for a continuum of different boundary conditions and physical conditions (which can be viewed as a high-dimensional space). We call the algorithm a "Deep Galerkin Method (DGM)" since it is similar in spirit to Galerkin methods, with the solution approximated by a neural network instead of a linear combination of basis functions. In addition, we prove a theorem regarding the approximation power of neural networks for a class of quasilinear parabolic PDEs.
translated by 谷歌翻译
显示了最佳的收敛速率,显示了对保守随机偏微分方程的平均场限制对解决方案解决方案解决方案解决方案的收敛。作为第二个主要结果,该SPDE的定量中心极限定理再次得出,并以最佳的收敛速率得出。该结果尤其适用于在过叠层化的,浅的神经网络中与SPDES溶液中随机梯度下降动力学的平均场缩放率的收敛性。结果表明,在限制SPDE中包含波动可以提高收敛速度,并保留有关随机梯度下降的波动的信息。
translated by 谷歌翻译
在本文中,我们研究了针对泊松方程的解决方案的概率和神经网络近似,但在$ \ mathbb {r}^d $的一般边界域中,较旧或$ c^2 $数据。我们的目标是两个基本目标。首先,也是最重要的是,我们证明了泊松方程的解决方案可以通过蒙特卡洛方法在sup-norm中进行数值近似,但基于球形算法的步行略有变化。这提供了相对于相对于相对于相对于有效的估计值规定的近似误差且没有维度的诅咒。此外,样品的总数不取决于执行近似的点。作为第二个目标,我们表明获得的蒙特卡洛求解器renders relu relu深层神经网络(DNN)解决泊松问题的解决方案,其大小在尺寸$ d $以及所需的错误中大多数取决于多项式。和低多项式复杂性。
translated by 谷歌翻译
我们建立了对椭圆形问题的误差对空间中的椭圆状况的误差,以及不同的边界条件。对于Dirichlet边界条件,我们在通过边界损失方法中大致强制强制执行边界值时估计错误。我们的结果适用于任意和一般非线性类$ v \ subseteq h ^ 1(\ omega)$的ansatz函数,并估算依赖优化精度,ansatz类的近似能力和 - 在案例中Dirichlet边界值 - 惩罚强度$ \ lambda $。对于非基本边界条件,RITZ方法的误差与ansatz类的近似率相同的速率。对于基本边界条件,鉴于$ H ^ 1(\ OMEGA)$的近似率和$ l ^ 2(\ partial \ omega)$的$ l ^ 2(\ partial \ omega)$的近似率,最佳衰减率的估计错误是$ \ min(s / 2,r)$,通过选择$ \ lambda_n \ sim n ^ {s} $来实现。我们讨论了通过Relu网络给出的Ansatz类的影响以及与有限元函数的现有估计的关系。
translated by 谷歌翻译
无限尺寸空间之间的学习运营商是机器学习,成像科学,数学建模和仿真等广泛应用中出现的重要学习任务。本文研究了利用深神经网络的Lipschitz运营商的非参数估计。 Non-asymptotic upper bounds are derived for the generalization error of the empirical risk minimizer over a properly chosen network class.在假设目标操作员表现出低维结构的情况下,由于训练样本大小增加,我们的误差界限衰减,根据我们估计中的内在尺寸,具有吸引力的快速速度。我们的假设涵盖了实际应用中的大多数情况,我们的结果通过利用操作员估算中的低维结构来产生快速速率。我们还研究了网络结构(例如,网络宽度,深度和稀疏性)对神经网络估计器的泛化误差的影响,并提出了对网络结构的选择来定量地最大化学习效率的一般建议。
translated by 谷歌翻译
众所周知,进食前馈神经网络的学习速度很慢,并且在深度学习应用中呈现了几十年的瓶颈。例如,广泛用于训练神经网络的基于梯度的学习算法在所有网络参数都必须迭代调整时往往会缓慢起作用。为了解决这个问题,研究人员和从业人员都尝试引入随机性来减少学习要求。基于Igelnik和Pao的原始结构,具有随机输入层的重量和偏见的单层神经网络在实践中取得了成功,但是缺乏必要的理论理由。在本文中,我们开始填补这一理论差距。我们提供了一个(校正的)严格证明,即Igelnik和PAO结构是连续函数在紧凑型域上连续函数的通用近似值,并且近似错误渐近地衰减,例如$ o(1/\ sqrt {n})网络节点。然后,我们将此结果扩展到非反应设置,证明人们可以在$ n $的情况下实现任何理想的近似误差,而概率很大。我们进一步调整了这种随机神经网络结构,以近似欧几里得空间的平滑,紧凑的亚曼叶量的功能,从而在渐近和非催化形式的理论保证中提供了理论保证。最后,我们通过数值实验说明了我们在歧管上的结果。
translated by 谷歌翻译
We consider the problem of estimating the optimal transport map between a (fixed) source distribution $P$ and an unknown target distribution $Q$, based on samples from $Q$. The estimation of such optimal transport maps has become increasingly relevant in modern statistical applications, such as generative modeling. At present, estimation rates are only known in a few settings (e.g. when $P$ and $Q$ have densities bounded above and below and when the transport map lies in a H\"older class), which are often not reflected in practice. We present a unified methodology for obtaining rates of estimation of optimal transport maps in general function spaces. Our assumptions are significantly weaker than those appearing in the literature: we require only that the source measure $P$ satisfies a Poincar\'e inequality and that the optimal map be the gradient of a smooth convex function that lies in a space whose metric entropy can be controlled. As a special case, we recover known estimation rates for bounded densities and H\"older transport maps, but also obtain nearly sharp results in many settings not covered by prior work. For example, we provide the first statistical rates of estimation when $P$ is the normal distribution and the transport map is given by an infinite-width shallow neural network.
translated by 谷歌翻译
找到Reset中的参数的最佳配置是一个非凸显最小化问题,但一阶方法尽管如此,找到了过度分辨率制度的全局最优。通过将Reset的训练过程转化为梯度流部分微分方程(PDE)和检查该限制过程的收敛性能,我们研究了这种现象。假设激活函数为2美元 - 最佳或部分$ 1 $-homerence;正则Relu满足后一种条件。我们表明,如果Reset足够大,则深度和宽度根据代数上的准确性和置信水平,一阶优化方法可以找到适合培训数据的全局最小化器。
translated by 谷歌翻译
在这项工作中,我们通过整流电源单元激活功能导出浅神经网络的整体表示的公式。主要是,我们的第一件结果涉及REPU浅网络的非相似性表现能力。本文的多维结果表征了可以用有界规范和可能无界宽度表示的功能集。
translated by 谷歌翻译
Many applications, such as system identification, classification of time series, direct and inverse problems in partial differential equations, and uncertainty quantification lead to the question of approximation of a non-linear operator between metric spaces $\mathfrak{X}$ and $\mathfrak{Y}$. We study the problem of determining the degree of approximation of such operators on a compact subset $K_\mathfrak{X}\subset \mathfrak{X}$ using a finite amount of information. If $\mathcal{F}: K_\mathfrak{X}\to K_\mathfrak{Y}$, a well established strategy to approximate $\mathcal{F}(F)$ for some $F\in K_\mathfrak{X}$ is to encode $F$ (respectively, $\mathcal{F}(F)$) in terms of a finite number $d$ (repectively $m$) of real numbers. Together with appropriate reconstruction algorithms (decoders), the problem reduces to the approximation of $m$ functions on a compact subset of a high dimensional Euclidean space $\mathbb{R}^d$, equivalently, the unit sphere $\mathbb{S}^d$ embedded in $\mathbb{R}^{d+1}$. The problem is challenging because $d$, $m$, as well as the complexity of the approximation on $\mathbb{S}^d$ are all large, and it is necessary to estimate the accuracy keeping track of the inter-dependence of all the approximations involved. In this paper, we establish constructive methods to do this efficiently; i.e., with the constants involved in the estimates on the approximation on $\mathbb{S}^d$ being $\mathcal{O}(d^{1/6})$. We study different smoothness classes for the operators, and also propose a method for approximation of $\mathcal{F}(F)$ using only information in a small neighborhood of $F$, resulting in an effective reduction in the number of parameters involved.
translated by 谷歌翻译
着名的工作系列(Barron,1993; Bresiman,1993; Klusowski&Barron,2018)提供了宽度$ N $的界限,所需的relu两层神经网络需要近似函数$ f $超过球。 \ mathcal {b} _r(\ mathbb {r} ^ d)$最终$ \ epsilon $,当傅立叶的数量$ c_f = \ frac {1} {(2 \ pi)^ {d / 2}} \ int _ {\ mathbb {r} ^ d} \ | \ xi \ | ^ 2 | \ hat {f}(\ xi)| \ d \ xi $是有限的。最近ongie等。 (2019)将Radon变换用作分析无限宽度Relu两层网络的工具。特别是,他们介绍了基于氡的$ \ mathcal {r} $ - norms的概念,并显示$ \ mathbb {r} ^ d $上定义的函数可以表示为无限宽度的双层神经网络如果只有在$ \ mathcal {r} $ - norm是有限的。在这项工作中,我们扩展了Ongie等人的框架。 (2019)并定义类似的基于氡的半规范($ \ mathcal {r},\ mathcal {r} $ - norms),使得函数承认在有界开放式$ \ mathcal上的无限宽度神经网络表示{ u} \ subseteq \ mathbb {r} ^ d $当它$ \ mathcal {r}时,\ mathcal {u} $ - norm是有限的。建立在这方面,我们派生稀疏(有限宽度)神经网络近似界,其优化Breiman(1993); Klusowski&Barron(2018)。最后,我们表明有限开放集的无限宽度神经网络表示不是唯一的,并研究其结构,提供模式连接的功能视图。
translated by 谷歌翻译
实施深层神经网络来学习参数部分微分方程(PDE)的解决方案图比使用许多常规数值方法更有效。但是,对这种方法进行了有限的理论分析。在这项研究中,我们研究了深层二次单元(requ)神经网络的表达能力,以近似参数PDE的溶液图。拟议的方法是由G. Kutyniok,P。Petersen,M。Raslan和R. Schneider(Gitta Kutyniok,Philipp Petersen,Mones Raslan和Reinhold Schneider。深层神经网络和参数PDES的理论分析)的最新重要工作激励的。 。建设性近似,第1-53、2021页,该第1-53、2021页,它使用深层的线性单元(relu)神经网络来求解参数PDE。与先前建立的复杂性$ \ MATHCAL {O} \ left(d^3 \ log_ {2}}^{q}(1/ \ epsilon)\ right)$用于relu神经网络,我们得出了上限的上限$ \ MATHCAL {o} \ left(d^3 \ log_ {2}^{q} \ log_ {2}(1/ \ epsilon)\ right)$)$ right Requ Neural网络的大小,以实现精度$ \ epsilon> 0 $,其中$ d $是代表解决方案的减少基础的维度。我们的方法充分利用了解决方案歧管的固有低维度和深层reque neural网络的更好近似性能。进行数值实验以验证我们的理论结果。
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
在一个拟合训练数据的深度神经网络(NN)中找到参数是一个非渗透优化问题,但基本的一阶优化方法(梯度下降)在许多实际情况下,具有完美拟合(零损失)的全局优化器。我们在限制性制度中检查残留神经网络(Reset)的剩余神经网络(Reset)的情况的这种现象,其中每个层(宽度)的层数(深度)和权重的数量均转到无穷大。首先,我们使用平均场限制参数来证明参数训练的梯度下降成为概率分布的梯度流,其特征在于大NN限制中的部分微分方程(PDE)。接下来,我们表明,在某些假设下,PDE的解决方案在训练时间内收敛到零损失解决方案。这些结果表明,如果Reset足够大,则reset的培训给出了近零损失。我们给出了减少给定阈值以下低于给定阈值的损失所需的深度和宽度的估计值。
translated by 谷歌翻译