基于梯度的深度学习算法在实践中表现出色,但这并不理解为什么尽管参数比训练示例更多,但他们能够概括得多。人们认为,隐性偏见是其概括能力的关键因素,因此近年来已经对其进行了广泛的研究。在这项简短的调查中,我们解释了隐性偏见的概念,回顾主要结果并讨论其含义。
translated by 谷歌翻译
A recent line of work studies overparametrized neural networks in the "kernel regime," i.e. when the network behaves during training as a kernelized linear predictor, and thus training with gradient descent has the effect of finding the minimum RKHS norm solution. This stands in contrast to other studies which demonstrate how gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms. Building on an observation by Chizat and Bach [2018], we show how the scale of the initialization controls the transition between the "kernel" (aka lazy) and "rich" (aka active) regimes and affects generalization properties in multilayer homogeneous models. We provide a complete and detailed analysis for a simple two-layer model that already exhibits an interesting and meaningful transition between the kernel and rich regimes, and we demonstrate the transition for more complex matrix factorization models and multilayer non-linear networks.
translated by 谷歌翻译
Efforts to understand the generalization mystery in deep learning have led to the belief that gradient-based optimization induces a form of implicit regularization, a bias towards models of low "complexity." We study the implicit regularization of gradient descent over deep linear neural networks for matrix completion and sensing, a model referred to as deep matrix factorization. Our first finding, supported by theory and experiments, is that adding depth to a matrix factorization enhances an implicit tendency towards low-rank solutions, oftentimes leading to more accurate recovery. Secondly, we present theoretical and empirical arguments questioning a nascent view by which implicit regularization in matrix factorization can be captured using simple mathematical norms. Our results point to the possibility that the language of standard regularizers may not be rich enough to fully encompass the implicit regularization brought forth by gradient-based optimization.
translated by 谷歌翻译
在梯度下降中,改变我们参数化的方式如何导致巨大的优化轨迹,从而引起令人惊讶的有意义的感应偏差:识别稀疏分类器或重建低级矩阵而无明确正规化。这种隐式正规化已经假设是深入学习良好概括的贡献因素。然而,自然梯度下降近似不变于Reparameterization,它始终遵循相同的轨迹并找到相同的最佳值。自然出现的问题:如果我们消除了参数化的角色,会发生什么,将找到哪个解决方案,发生了哪些新的属性?我们在逻辑损失和深层矩阵分解下,对深层线性网络进行自然梯度流动的行为。我们的一些发现扩展到非线性神经网络,具有足够但有限的参数化。我们证明存在学习问题,其中自然梯度下降失败概括,而具有正确架构的梯度下降则表现良好。
translated by 谷歌翻译
我们检查了在未注册的逻辑回归问题上的梯度下降,并在线性可分离数据集上具有均匀的线性预测指标。我们显示了预测变量收敛到最大边缘(硬边缘SVM)解决方案的方向。结果还推广到其他单调的损失函数,在无穷大时降低了损失功能,多级问题,并在某个受限的环境中训练在深网中的重量层。此外,我们表明这种融合非常慢,只有在损失本身的融合中的对数。这可以有助于解释即使训练错误为零,并且训练损失非常小,并且正如我们所显示的,即使验证损失增加了,也可以继续优化逻辑或跨透明度损失的好处。我们的方法还可以帮助理解隐式正则化n更复杂的模型以及其他优化方法。
translated by 谷歌翻译
了解通过随机梯度下降(SGD)训练的神经网络的特性是深度学习理论的核心。在这项工作中,我们采取了平均场景,并考虑通过SGD培训的双层Relu网络,以实现一个非变量正则化回归问题。我们的主要结果是SGD偏向于简单的解决方案:在收敛时,Relu网络实现输入的分段线性图,以及“结”点的数量 - 即,Relu网络估计器的切线变化的点数 - 在两个连续的训练输入之间最多三个。特别地,随着网络的神经元的数量,通过梯度流的解决方案捕获SGD动力学,并且在收敛时,重量的分布方法接近相关的自由能量的独特最小化器,其具有GIBBS形式。我们的主要技术贡献在于分析了这一最小化器产生的估计器:我们表明其第二阶段在各地消失,除了代表“结”要点的一些特定地点。我们还提供了经验证据,即我们的理论预测的不同可能发生与数据点不同的位置的结。
translated by 谷歌翻译
小组卷积神经网络(G-CNN)是卷积神经网络(CNN)的概括,通过在其体系结构中明确编码旋转和排列,在广泛的技术应用中脱颖而出。尽管G-CNN的成功是由它们的\ emph {emplapicit}对称偏见驱动的,但最近的一项工作表明,\ emph {隐式}对特定体系结构的偏差是理解过度参数化神经网的概​​括的关键。在这种情况下,我们表明,通过梯度下降训练了二进制分类的$ L $ layer全宽线性G-CNN,将二进制分类收敛到具有低级别傅立叶矩阵系数的解决方案,并由$ 2/l $ -schatten矩阵规范正规化。我们的工作严格概括了先前对线性CNN的隐性偏差对线性G-CNN的隐性分析,包括所有有限组,包括非交换组的挑战性设置(例如排列),以及无限组的频段限制G-CNN 。我们通过在各个组上实验验证定理,并在经验上探索更现实的非线性网络,该网络在局部捕获了相似的正则化模式。最后,我们通过不确定性原理提供了对傅立叶空间隐式正则化的直观解释。
translated by 谷歌翻译
Neural networks trained to minimize the logistic (a.k.a. cross-entropy) loss with gradient-based methods are observed to perform well in many supervised classification tasks. Towards understanding this phenomenon, we analyze the training and generalization behavior of infinitely wide two-layer neural networks with homogeneous activations. We show that the limits of the gradient flow on exponentially tailed losses can be fully characterized as a max-margin classifier in a certain non-Hilbertian space of functions. In presence of hidden low-dimensional structures, the resulting margin is independent of the ambiant dimension, which leads to strong generalization bounds. In contrast, training only the output layer implicitly solves a kernel support vector machine, which a priori does not enjoy such an adaptivity. Our analysis of training is non-quantitative in terms of running time but we prove computational guarantees in simplified settings by showing equivalences with online mirror descent. Finally, numerical experiments suggest that our analysis describes well the practical behavior of two-layer neural networks with ReLU activations and confirm the statistical benefits of this implicit bias.
translated by 谷歌翻译
批准方法,例如批处理[Ioffe和Szegedy,2015],体重[Salimansand Kingma,2016],实例[Ulyanov等,2016]和层归一化[Baet al。,2016]已广泛用于现代机器学习中。在这里,我们研究了体重归一化方法(WN)方法[Salimans和Kingma,2016年],以及一种称为重扎式投影梯度下降(RPGD)的变体,用于过多散热性最小二乘回归。 WN和RPGD用比例G和一个单位向量W重新绘制权重,因此目标函数变为非convex。我们表明,与原始目标的梯度下降相比,这种非凸式配方具有有益的正则化作用。这些方法适应性地使重量正规化并收敛于最小L2规范解决方案,即使初始化远非零。对于G和W的某些步骤,我们表明它们可以收敛于最小规范解决方案。这与梯度下降的行为不同,梯度下降的行为仅在特征矩阵范围内的一个点开始时才收敛到最小规范解,因此对初始化更敏感。
translated by 谷歌翻译
通过扩展相关梯度流动,研究梯度下降的梯度下降的收敛性,即训练深层线性神经网络,即深矩阵因子。我们表明,在步骤上的合适条件下,梯度下降将收敛到损耗功能的临界点,即本文中的方形损失。此外,我们证明,对于几乎所有初始化梯度下降,在两层的情况下会聚到全局最小值。在三层或更多层的情况下,我们示出了梯度下降将收敛到一些固定等级的歧管矩阵上的全局最小值,其中等级不能确定先验。
translated by 谷歌翻译
理解梯度下降对Relu网络的概括能力的隐性偏见一直是机器学习研究中的重要研究主题。不幸的是,即使对于经过正方形损失训练的单个Relu神经元,最近也表现出不可能以模型参数规范来表征隐式正则化(Vardi&Shamir,2021)。为了缩小理解Relu网络的有趣概括行为的差距,在训练单神经元网络时,我们在这里检查参数空间中的梯度流动动力学。具体来说,我们发现了在支持向量方面的隐性偏见,该偏见在Relu网络良好地概括的原因和如何延伸方面起着关键作用。此外,我们分析了梯度流相对于初始化规范的幅度,并表明学习重量的规范严格通过梯度流量增加。最后,我们证明了单个Relu神经元的全球融合,以$ d = 2 $ case。
translated by 谷歌翻译
我们提供了通过线性激活的多渠道卷积神经网络中的$ \ ell_2 $标准来最大程度地减少$ \ ell_2 $标准而产生的功能空间表征,并经验测试了我们对使用梯度下降训练的Relu网络的假设。我们将功能空间中的诱导正规化程序定义为实现函数所需的网络权重规范的最小$ \ ell_2 $。对于具有$ C $输出频道和内核尺寸$ K $的两个层线性卷积网络,我们显示以下内容:(a)如果网络的输入是单个渠道,则任何$ k $的诱导正规器都与数字无关输出频道$ c $。此外,我们得出正常化程序是由半决赛程序(SDP)给出的规范。 (b)相比之下,对于多通道输入,仅实现所有矩阵值值线性函数而需要多个输出通道,因此归纳偏置确实取决于$ c $。但是,对于足够大的$ c $,诱导的正规化程序再次由独立于$ c $的SDP给出。特别是,$ k = 1 $和$ k = d $(输入维度)的诱导正规器以封闭形式作为核标准和$ \ ell_ {2,1} $ group-sparse Norm,线性预测指标的傅立叶系数。我们通过对MNIST和CIFAR-10数据集的实验来研究理论结果对从线性和RELU网络上梯度下降的隐式正则化的更广泛的适用性。
translated by 谷歌翻译
清晰度感知最小化(SAM)是一种最近的训练方法,它依赖于最严重的重量扰动,可显着改善各种环境中的概括。我们认为,基于pac-bayes概括结合的SAM成功的现有理由,而收敛到平面最小值的想法是不完整的。此外,没有解释说在SAM中使用$ m $ sharpness的成功,这对于概括而言至关重要。为了更好地理解SAM的这一方面,我们理论上分析了其对角线性网络的隐式偏差。我们证明,SAM总是选择一种比标准梯度下降更好的解决方案,用于某些类别的问题,并且通过使用$ m $ -sharpness可以放大这种效果。我们进一步研究了隐性偏见在非线性网络上的特性,在经验上,我们表明使用SAM进行微调的标准模型可以导致显着的概括改进。最后,当与随机梯度一起使用时,我们为非凸目标提供了SAM的收敛结果。我们从经验上说明了深层网络的这些结果,并讨论了它们与SAM的概括行为的关系。我们的实验代码可在https://github.com/tml-epfl/understanding-sam上获得。
translated by 谷歌翻译
过度分化的深网络的泛化神秘具有有动力的努力,了解梯度下降(GD)如何收敛到概括井的低损耗解决方案。现实生活中的神经网络从小随机值初始化,并以分类的“懒惰”或“懒惰”或“NTK”的训练训练,分析更成功,以及最近的结果序列(Lyu和Li ,2020年; Chizat和Bach,2020; Ji和Telgarsky,2020)提供了理论证据,即GD可以收敛到“Max-ramin”解决方案,其零损失可能呈现良好。但是,仅在某些环境中证明了余量的全球最优性,其中神经网络无限或呈指数级宽。目前的纸张能够为具有梯度流动训练的两层泄漏的Relu网,无论宽度如何,都能为具有梯度流动的双层泄漏的Relu网建立这种全局最优性。分析还为最近的经验研究结果(Kalimeris等,2019)给出了一些理论上的理由,就GD的所谓简单的偏见为线性或其他“简单”的解决方案,特别是在训练中。在悲观方面,该论文表明这种结果是脆弱的。简单的数据操作可以使梯度流量会聚到具有次优裕度的线性分类器。
translated by 谷歌翻译
In a series of recent theoretical works, it was shown that strongly overparameterized neural networks trained with gradient-based methods could converge exponentially fast to zero training loss, with their parameters hardly varying. In this work, we show that this "lazy training" phenomenon is not specific to overparameterized neural networks, and is due to a choice of scaling, often implicit, that makes the model behave as its linearization around the initialization, thus yielding a model equivalent to learning with positive-definite kernels. Through a theoretical analysis, we exhibit various situations where this phenomenon arises in non-convex optimization and we provide bounds on the distance between the lazy and linearized optimization paths. Our numerical experiments bring a critical note, as we observe that the performance of commonly used non-linear deep convolutional neural networks in computer vision degrades when trained in the lazy regime. This makes it unlikely that "lazy training" is behind the many successes of neural networks in difficult high dimensional tasks.
translated by 谷歌翻译
表征过度参数化神经网络的显着概括性能仍然是一个开放的问题。在本文中,我们促进了将重点转移到初始化而不是神经结构或(随机)梯度下降的转变,以解释这种隐式的正则化。通过傅立叶镜头,我们得出了神经网络光谱偏置的一般结果,并表明神经网络的概括与它们的初始化密切相关。此外,我们在经验上使用实用的深层网络巩固了开发的理论见解。最后,我们反对有争议的平米尼猜想,并表明傅立叶分析为理解神经网络的概括提供了更可靠的框架。
translated by 谷歌翻译
当我们扩大数据集,模型尺寸和培训时间时,深入学习方法的能力中存在越来越多的经验证据。尽管有一些关于这些资源如何调节统计能力的说法,但对它们对模型培训的计算问题的影响知之甚少。这项工作通过学习$ k $ -sparse $ n $ bits的镜头进行了探索,这是一个构成理论计算障碍的规范性问题。在这种情况下,我们发现神经网络在扩大数据集大小和运行时间时会表现出令人惊讶的相变。特别是,我们从经验上证明,通过标准培训,各种体系结构以$ n^{o(k)} $示例学习稀疏的平等,而损失(和错误)曲线在$ n^{o(k)}后突然下降。 $迭代。这些积极的结果几乎匹配已知的SQ下限,即使没有明确的稀疏性先验。我们通过理论分析阐明了这些现象的机制:我们发现性能的相变不到SGD“在黑暗中绊倒”,直到它找到了隐藏的特征集(自然算法也以$ n^中的方式运行{o(k)} $ time);取而代之的是,我们表明SGD逐渐扩大了人口梯度的傅立叶差距。
translated by 谷歌翻译
在梯度下降中注入噪声具有几个理想的特征。在本文中,我们在计算梯度步骤之前探索噪声注入,该梯度步骤已知具有平滑和正规化的特性。我们表明,小扰动会导致基于L1-norm,L1-Norms或核规范的简单有限维模型的显式正则化。当应用于具有较大宽度的过多散热性神经网络时,我们表明,由于过多参数化导致的方差爆炸,相同的扰动无效。但是,我们还表明,独立的层扰动允许避免爆炸差异项,然后可以获得显式正则化器。我们从经验上表明,与香草(随机)梯度下降训练相比,小的扰动可以提高泛化性能,对训练程序进行了较小的调整。
translated by 谷歌翻译
We study implicit regularization when optimizing an underdetermined quadratic objective over a matrix X with gradient descent on a factorization of X. We conjecture and provide empirical and theoretical evidence that with small enough step sizes and initialization close enough to the origin, gradient descent on a full dimensional factorization converges to the minimum nuclear norm solution.
translated by 谷歌翻译
了解神经网络记住培训数据是一个有趣的问题,具有实践和理论的含义。在本文中,我们表明,在某些情况下,实际上可以从训练有素的神经网络分类器的参数中重建训练数据的很大一部分。我们提出了一种新颖的重建方案,该方案源于有关基于梯度方法的训练神经网络中隐性偏见的最新理论结果。据我们所知,我们的结果是第一个表明从训练有素的神经网络分类器中重建大部分实际培训样本的结果是可以的。这对隐私有负面影响,因为它可以用作揭示敏感培训数据的攻击。我们在一些标准的计算机视觉数据集上演示了二进制MLP分类器的方法。
translated by 谷歌翻译