在解决复杂的现实世界任务方面的最新深度学习(DL)进步导致其在实际应用中广泛采用。但是,这个机会具有重大的潜在风险,因为这些模型中的许多模型都依赖于对各种应用程序进行培训的隐私敏感数据,这使它们成为侵犯隐私的过度暴露威胁表面。此外,基于云的机器学习-AS-A-Service(MLAAS)在其强大的基础架构支持方面的广泛使用扩大了威胁表面,以包括各种远程侧渠道攻击。在本文中,我们首先在DL实现中识别并报告了一个新颖的数据依赖性计时侧通道泄漏(称为类泄漏),该实现源自广泛使用的DL Framework Pytorch中的非恒定时间分支操作。我们进一步展示了一个实用的推理时间攻击,其中具有用户特权和硬标签黑盒访问MLAA的对手可以利用类泄漏来损害MLAAS用户的隐私。 DL模型容易受到会员推理攻击(MIA)的攻击,其中对手的目标是推断在训练模型时是否使用过任何特定数据。在本文中,作为一个单独的案例研究,我们证明了具有差异隐私保护的DL模型(对MIA的流行对策)仍然容易受到MIA的影响,而不是针对对手开发的漏洞泄漏。我们通过进行恒定的分支操作来减轻班级泄漏并有助于减轻MIA,从而开发出易于实施的对策。我们选择了两个标准基准图像分类数据集CIFAR-10和CIFAR-100来训练五个最先进的预训练的DL模型,这是在具有Intel Xeon和Intel Xeon和Intel I7处理器的两个不同的计算环境中,以验证我们的方法。
translated by 谷歌翻译
Differentially private federated learning (DP-FL) has received increasing attention to mitigate the privacy risk in federated learning. Although different schemes for DP-FL have been proposed, there is still a utility gap. Employing central Differential Privacy in FL (CDP-FL) can provide a good balance between the privacy and model utility, but requires a trusted server. Using Local Differential Privacy for FL (LDP-FL) does not require a trusted server, but suffers from lousy privacy-utility trade-off. Recently proposed shuffle DP based FL has the potential to bridge the gap between CDP-FL and LDP-FL without a trusted server; however, there is still a utility gap when the number of model parameters is large. In this work, we propose OLIVE, a system that combines the merits from CDP-FL and LDP-FL by leveraging Trusted Execution Environment (TEE). Our main technical contributions are the analysis and countermeasures against the vulnerability of TEE in OLIVE. Firstly, we theoretically analyze the memory access pattern leakage of OLIVE and find that there is a risk for sparsified gradients, which is common in FL. Secondly, we design an inference attack to understand how the memory access pattern could be linked to the training data. Thirdly, we propose oblivious yet efficient algorithms to prevent the memory access pattern leakage in OLIVE. Our experiments on real-world data demonstrate that OLIVE is efficient even when training a model with hundreds of thousands of parameters and effective against side-channel attacks on TEE.
translated by 谷歌翻译
机器学习与服务(MLAAS)已成为广泛的范式,即使是通过例如,也是客户可用的最复杂的机器学习模型。一个按要求的原则。这使用户避免了数据收集,超参数调整和模型培训的耗时过程。但是,通过让客户访问(预测)模型,MLAAS提供商危害其知识产权,例如敏感培训数据,优化的超参数或学到的模型参数。对手可以仅使用预测标签创建模型的副本,并以(几乎)相同的行为。尽管已经描述了这种攻击的许多变体,但仅提出了零星的防御策略,以解决孤立的威胁。这增加了对模型窃取领域进行彻底系统化的必要性,以全面了解这些攻击是成功的原因,以及如何全面地捍卫它们。我们通过对模型窃取攻击,评估其性能以及探索不同设置中相应的防御技术来解决这一问题。我们为攻击和防御方法提出了分类法,并提供有关如何根据目标和可用资源选择正确的攻击或防御策略的准则。最后,我们分析了当前攻击策略使哪些防御能力降低。
translated by 谷歌翻译
机器学习中的隐私和安全挑战(ML)已成为ML普遍的开发以及最近对大型攻击表面的展示,已成为一个关键的话题。作为一种成熟的以系统为导向的方法,在学术界和行业中越来越多地使用机密计算来改善各种ML场景的隐私和安全性。在本文中,我们将基于机密计算辅助的ML安全性和隐私技术的发现系统化,以提供i)保密保证和ii)完整性保证。我们进一步确定了关键挑战,并提供有关ML用例现有可信赖的执行环境(TEE)系统中限制的专门分析。我们讨论了潜在的工作,包括基础隐私定义,分区的ML执行,针对ML的专用发球台设计,TEE Awawe Aware ML和ML Full Pipeline保证。这些潜在的解决方案可以帮助实现强大的TEE ML,以保证无需引入计算和系统成本。
translated by 谷歌翻译
深度学习(DL)模型越来越多地为应用程序提供多种应用。不幸的是,这种普遍性也使它们成为提取攻击的有吸引力的目标,这些目标可以窃取目标DL模型的体系结构,参数和超参数。现有的提取攻击研究观察到不同DL模型和数据集的攻击成功水平不同,但其易感性背后的根本原因通常仍不清楚。确定此类根本原因弱点将有助于促进安全的DL系统,尽管这需要在各种情况下研究提取攻击,以确定跨攻击成功和DL特征的共同点。理解,实施和评估甚至单一攻击所需的绝大部分技术努力和时间都使探索现有的大量独特提取攻击方案是不可行的,当前框架通常设计用于仅针对特定攻击类型,数据集和数据集,以及硬件平台。在本文中,我们介绍捏:一个有效且自动化的提取攻击框架,能够在异质硬件平台上部署和评估多个DL模型和攻击。我们通过经验评估大量先前未开发的提取攻击情景以及次级攻击阶段来证明捏合的有效性。我们的主要发现表明,1)多个特征影响开采攻击成功跨越DL模型体系结构,数据集复杂性,硬件,攻击类型和2)部分成功的提取攻击显着增强了进一步的对抗攻击分期的成功。
translated by 谷歌翻译
Deep Learning has recently become hugely popular in machine learning for its ability to solve end-to-end learning systems, in which the features and the classifiers are learned simultaneously, providing significant improvements in classification accuracy in the presence of highly-structured and large databases.Its success is due to a combination of recent algorithmic breakthroughs, increasingly powerful computers, and access to significant amounts of data.Researchers have also considered privacy implications of deep learning. Models are typically trained in a centralized manner with all the data being processed by the same training algorithm. If the data is a collection of users' private data, including habits, personal pictures, geographical positions, interests, and more, the centralized server will have access to sensitive information that could potentially be mishandled. To tackle this problem, collaborative deep learning models have recently been proposed where parties locally train their deep learning structures and only share a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy (DP) to make information extraction even more challenging, as proposed by Shokri and Shmatikov at CCS'15.Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed, federated, or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates prototypical samples of the targeted training set that was meant to be private (the samples generated by the GAN are intended to come from the same distribution as the training data). Interestingly, we show that record-level differential privacy applied to the shared parameters of the model, as suggested in previous work, is ineffective (i.e., record-level DP is not designed to address our attack).
translated by 谷歌翻译
由于机器学习(ML)技术和应用正在迅速改变许多计算领域,以及与ML相关的安全问题也在出现。在系统安全领域中,已经进行了许多努力,以确保ML模型和数据机密性。ML计算通常不可避免地在不受信任的环境中执行,并因此需要复杂的多方安全要求。因此,研究人员利用可信任的执行环境(TEES)来构建机密ML计算系统。本文通过在不受信任的环境中分类攻击向量和缓解攻击载体和缓解来进行系统和全面的调查,分析多方ML安全要求,并讨论相关工程挑战。
translated by 谷歌翻译
窃取对受控信息的攻击,以及越来越多的信息泄漏事件,已成为近年来新兴网络安全威胁。由于蓬勃发展和部署先进的分析解决方案,新颖的窃取攻击利用机器学习(ML)算法来实现高成功率并导致大量损坏。检测和捍卫这种攻击是挑战性和紧迫的,因此政府,组织和个人应该非常重视基于ML的窃取攻击。本调查显示了这种新型攻击和相应对策的最新进展。以三类目标受控信息的视角审查了基于ML的窃取攻击,包括受控用户活动,受控ML模型相关信息和受控认证信息。最近的出版物总结了概括了总体攻击方法,并导出了基于ML的窃取攻击的限制和未来方向。此外,提出了从三个方面制定有效保护的对策 - 检测,破坏和隔离。
translated by 谷歌翻译
We quantitatively investigate how machine learning models leak information about the individual data records on which they were trained. We focus on the basic membership inference attack: given a data record and black-box access to a model, determine if the record was in the model's training dataset. To perform membership inference against a target model, we make adversarial use of machine learning and train our own inference model to recognize differences in the target model's predictions on the inputs that it trained on versus the inputs that it did not train on.We empirically evaluate our inference techniques on classification models trained by commercial "machine learning as a service" providers such as Google and Amazon. Using realistic datasets and classification tasks, including a hospital discharge dataset whose membership is sensitive from the privacy perspective, we show that these models can be vulnerable to membership inference attacks. We then investigate the factors that influence this leakage and evaluate mitigation strategies.
translated by 谷歌翻译
随着功能加密的出现,已经出现了加密数据计算的新可能性。功能加密使数据所有者能够授予第三方访问执行指定的计算,而无需透露其输入。与完全同态加密不同,它还提供了普通的计算结果。机器学习的普遍性导致在云计算环境中收集了大量私人数据。这引发了潜在的隐私问题,并需要更多私人和安全的计算解决方案。在保护隐私的机器学习(PPML)方面已做出了许多努力,以解决安全和隐私问题。有基于完全同态加密(FHE),安全多方计算(SMC)的方法,以及最近的功能加密(FE)。但是,与基于FHE的PPML方法相比,基于FE的PPML仍处于起步阶段,并且尚未受到很多关注。在本文中,我们基于FE总结文献中的最新作品提供了PPML作品的系统化。我们专注于PPML应用程序的内部产品FE和基于二次FE的机器学习模型。我们分析了可用的FE库的性能和可用性及其对PPML的应用。我们还讨论了基于FE的PPML方法的潜在方向。据我们所知,这是系统化基于FE的PPML方法的第一项工作。
translated by 谷歌翻译
普遍的对策扰动是图像不可思议的和模型 - 无关的噪声,当添加到任何图像时可以误导训练的深卷积神经网络进入错误的预测。由于这些普遍的对抗性扰动可以严重危害实践深度学习应用的安全性和完整性,因此现有技术使用额外的神经网络来检测输入图像源的这些噪声的存在。在本文中,我们展示了一种攻击策略,即通过流氓手段激活(例如,恶意软件,木马)可以通过增强AI硬件加速器级的对抗噪声来绕过这些现有对策。我们使用Conv2D功能软件内核的共同仿真和FuseSoC环境下的硬件的Verilog RTL模型的共同仿真,展示了关于几个深度学习模型的加速度普遍对抗噪声。
translated by 谷歌翻译
最近对机器学习(ML)模型的攻击,例如逃避攻击,具有对抗性示例,并通过提取攻击窃取了一些模型,构成了几种安全性和隐私威胁。先前的工作建议使用对抗性训练从对抗性示例中保护模型,以逃避模型的分类并恶化其性能。但是,这种保护技术会影响模型的决策边界及其预测概率,因此可能会增加模型隐私风险。实际上,仅使用对模型预测输出的查询访问的恶意用户可以提取它并获得高智能和高保真替代模型。为了更大的提取,这些攻击利用了受害者模型的预测概率。实际上,所有先前关于提取攻击的工作都没有考虑到出于安全目的的培训过程中的变化。在本文中,我们提出了一个框架,以评估具有视觉数据集对对抗训练的模型的提取攻击。据我们所知,我们的工作是第一个进行此类评估的工作。通过一项广泛的实证研究,我们证明了受对抗训练的模型比在自然训练情况下获得的模型更容易受到提取攻击的影响。他们可以达到高达$ \ times1.2 $更高的准确性和同意,而疑问低于$ \ times0.75 $。我们还发现,与从自然训练的(即标准)模型中提取的DNN相比,从鲁棒模型中提取的对抗性鲁棒性能力可通过提取攻击(即从鲁棒模型提取的深神经网络(DNN)提取的深神网络(DNN))传递。
translated by 谷歌翻译
联合学习(FL)为培训机器学习模型打开了新的观点,同时将个人数据保存在用户场所上。具体而言,在FL中,在用户设备上训练了模型,并且仅将模型更新(即梯度)发送到中央服务器以进行聚合目的。但是,近年来发表的一系列推理攻击泄漏了私人数据,这强调了需要设计有效的保护机制来激励FL的大规模采用。尽管存在缓解服务器端的这些攻击的解决方案,但几乎没有采取任何措施来保护用户免受客户端执行的攻击。在这种情况下,在客户端使用受信任的执行环境(TEE)是最建议的解决方案之一。但是,现有的框架(例如,Darknetz)需要静态地将机器学习模型的很大一部分放入T恤中,以有效防止复杂的攻击或攻击组合。我们提出了GradSec,该解决方案允许在静态或动态上仅在机器学习模型的TEE上进行保护,因此将TCB的大小和整体训练时间降低了30%和56%,相比之下 - 艺术竞争者。
translated by 谷歌翻译
深度神经网络(DNN)的最新进步已经看到多个安全敏感域中的广泛部署。需要资源密集型培训和使用有价值的域特定培训数据,使这些模型成为模型所有者的顶级知识产权(IP)。 DNN隐私的主要威胁之一是模型提取攻击,前提是在DNN模型中试图窃取敏感信息。最近的研究表明,基于硬件的侧信道攻击可以揭示关于DNN模型的内部知识(例如,模型架构)但到目前为止,现有攻击不能提取详细的模型参数(例如,权重/偏置)。在这项工作中,我们首次提出了一种先进的模型提取攻击框架,借助记忆侧通道攻击有效地窃取了DNN权重。我们建议的深度包括两个关键阶段。首先,我们通过采用基于Rowhammer的硬件故障技术作为信息泄漏向量,开发一种名为HammerLeak的新重量位信息提取方法。 Hammerleak利用了用于DNN应用的几种新的系统级技术,以实现快速高效的重量窃取。其次,我们提出了一种具有平均聚类重量惩罚的新型替代模型训练算法,其利用部分泄漏的位信息有效地利用了目标受害者模型的替代原型。我们在三个流行的图像数据集(例如,CiFar-10/100 / GTSRB)和四个DNN架构上评估该替代模型提取方法(例如,Reset-18/34 / Wide-Reset / Vgg-11)。提取的替代模型在CiFar-10数据集的深度剩余网络上成功实现了超过90%的测试精度。此外,我们提取的替代模型也可能产生有效的对抗性输入样本来欺骗受害者模型。
translated by 谷歌翻译
Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge.We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing stateof-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.
translated by 谷歌翻译
A distribution inference attack aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, but the factors that impact distribution inference risk are not well understood and demonstrated attacks often rely on strong and unrealistic assumptions such as full knowledge of training environments even in supposedly black-box threat scenarios. To improve understanding of distribution inference risks, we develop a new black-box attack that even outperforms the best known white-box attack in most settings. Using this new attack, we evaluate distribution inference risk while relaxing a variety of assumptions about the adversary's knowledge under black-box access, like known model architectures and label-only access. Finally, we evaluate the effectiveness of previously proposed defenses and introduce new defenses. We find that although noise-based defenses appear to be ineffective, a simple re-sampling defense can be highly effective. Code is available at https://github.com/iamgroot42/dissecting_distribution_inference
translated by 谷歌翻译
从公共机器学习(ML)模型中泄漏数据是一个越来越重要的领域,因为ML的商业和政府应用可以利用多个数据源,可能包括用户和客户的敏感数据。我们对几个方面的当代进步进行了全面的调查,涵盖了非自愿数据泄漏,这对ML模型很自然,潜在的恶毒泄漏是由隐私攻击引起的,以及目前可用的防御机制。我们专注于推理时间泄漏,这是公开可用模型的最可能场景。我们首先在不同的数据,任务和模型体系结构的背景下讨论什么是泄漏。然后,我们提出了跨非自愿和恶意泄漏的分类法,可用的防御措施,然后进行当前可用的评估指标和应用。我们以杰出的挑战和开放性的问题结束,概述了一些有希望的未来研究方向。
translated by 谷歌翻译
边缘计算是一个将数据处理服务转移到生成数据的网络边缘的范式。尽管这样的架构提供了更快的处理和响应,但除其他好处外,它还提出了必须解决的关键安全问题和挑战。本文讨论了从硬件层到系统层的边缘网络体系结构出现的安全威胁和漏洞。我们进一步讨论了此类网络中的隐私和法规合规性挑战。最后,我们认为需要一种整体方法来分析边缘网络安全姿势,该姿势必须考虑每一层的知识。
translated by 谷歌翻译
联合学习允许一组用户在私人训练数据集中培训深度神经网络。在协议期间,数据集永远不会留下各个用户的设备。这是通过要求每个用户向中央服务器发送“仅”模型更新来实现,从而汇总它们以更新深神经网络的参数。然而,已经表明,每个模型更新都具有关于用户数据集的敏感信息(例如,梯度反转攻击)。联合学习的最先进的实现通过利用安全聚合来保护这些模型更新:安全监控协议,用于安全地计算用户的模型更新的聚合。安全聚合是关键,以保护用户的隐私,因为它会阻碍服务器学习用户提供的个人模型更新的源,防止推断和数据归因攻击。在这项工作中,我们表明恶意服务器可以轻松地阐明安全聚合,就像后者未到位一样。我们设计了两种不同的攻击,能够在参与安全聚合的用户数量上,独立于参与安全聚合的用户数。这使得它们在大规模现实世界联邦学习应用中的具体威胁。攻击是通用的,不瞄准任何特定的安全聚合协议。即使安全聚合协议被其理想功能替换为提供完美的安全性的理想功能,它们也同样有效。我们的工作表明,安全聚合与联合学习相结合,当前实施只提供了“虚假的安全感”。
translated by 谷歌翻译
Large training data and expensive model tweaking are standard features of deep learning for images. As a result, data owners often utilize cloud resources to develop large-scale complex models, which raises privacy concerns. Existing solutions are either too expensive to be practical or do not sufficiently protect the confidentiality of data and models. In this paper, we study and compare novel \emph{image disguising} mechanisms, DisguisedNets and InstaHide, aiming to achieve a better trade-off among the level of protection for outsourced DNN model training, the expenses, and the utility of data. DisguisedNets are novel combinations of image blocktization, block-level random permutation, and two block-level secure transformations: random multidimensional projection (RMT) and AES pixel-level encryption (AES). InstaHide is an image mixup and random pixel flipping technique \cite{huang20}. We have analyzed and evaluated them under a multi-level threat model. RMT provides a better security guarantee than InstaHide, under the Level-1 adversarial knowledge with well-preserved model quality. In contrast, AES provides a security guarantee under the Level-2 adversarial knowledge, but it may affect model quality more. The unique features of image disguising also help us to protect models from model-targeted attacks. We have done an extensive experimental evaluation to understand how these methods work in different settings for different datasets.
translated by 谷歌翻译