GPT-3和Palm等大型语言模型在几次学习中表现出色。但是,他们仍然在推理任务(例如算术基准GSM8K)上挣扎。最近的进步故意指导语言模型在产生最终答案之前生成一系列推理步骤,从而成功地将GSM8K基准从17.9%提高到58.1%,以解决问题的解决率。在本文中,我们提出了一种新的方法,即多样化的方法(关于推理步骤的多样化验证者),以进一步提高其推理能力。多样性首先探索不同的提示,以增强推理路径的多样性。其次,Diverse介绍了一个验证者,以区分好的答案和不良答案,从而获得更好的权重投票。最后,多样性验证每个步骤的正确性,而不是整体上的所有步骤。我们使用最新的语言型号Davinci-002进行广泛的实验,并证明多样化可以在八分之六的推理基准中实现新的最先进的性能(例如,GSM8K 74.4%至83.2%),超过棕榈具有540B参数的模型。
translated by 谷歌翻译
Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc. This paper provides a comprehensive survey of cutting-edge research on reasoning with language model prompting. We introduce research works with comparisons and summaries and provide systematic resources to help beginners. We also discuss the potential reasons for emerging such reasoning abilities and highlight future research directions.
translated by 谷歌翻译
When a large language model (LLM) performs complex reasoning by chain of thought (CoT), it can be highly sensitive to individual mistakes. We have had to train verifiers to address this issue. As we all know, after human inferring a conclusion, they often check it by re-verifying it, which can avoid some mistakes. We propose a new method called self-verification that uses the conclusion of the CoT as a condition to build a new sample and asks the LLM to re-predict the original conditions which be masked. We calculate an explainable verification score based on the accuracy. This method can improve the accuracy of multiple arithmetics and logical reasoning datasets when using few-shot learning. we have demonstrated that LLMs can conduct explainable self-verification of their own conclusions and achieve competitive reasoning performance. Extensive experimentals have demonstrated that our method can help multiple large language models with self-verification can avoid interference from incorrect CoT. Code is available at \url{https://github.com/WENGSYX/Self-Verification}
translated by 谷歌翻译
Recently, there has been significant progress in teaching language models to perform step-by-step reasoning to solve complex numerical reasoning tasks. Chain-of-thoughts prompting (CoT) is by far the state-of-art method for these tasks. CoT uses language models to perform both reasoning and computation in the multi-step `thought' process. To disentangle computation from reasoning, we propose `Program of Thoughts' (PoT), which uses language models (mainly Codex) to express the reasoning process as a program. The computation is relegated to an external computer, which executes the generated programs to derive the answer. We evaluate PoT on five math word problem datasets (GSM, AQuA, SVAMP, TabMWP, MultiArith) and three financial-QA datasets (FinQA, ConvFinQA, TATQA) for both few-shot and zero-shot setups. Under both few-shot and zero-shot settings, PoT can show an average performance gain over CoT by around 12\% across all the evaluated datasets. By combining PoT with self-consistency decoding, we can achieve SoTA performance on all math problem datasets and near-SoTA performance on financial datasets. All of our data and code are released in Github\footnote{\url{https://github.com/wenhuchen/Program-of-Thoughts}}.
translated by 谷歌翻译
最近的研究表明,理性或逐步思想链可用于改善多步推理任务的性能。我们重新考虑了理由的提示,提示了几次射击中的内部学习学习,其中(输入 - >输出)提示将扩展到(输入,理由 - >输出)提示。对于以理由为提示的提示,我们证明了现有的方法(依赖手动及时工程)如何受到可能损害绩效的次级理由。为了减轻这种脆弱性,我们提出了一个统一的授权合奏的统一框架,在该框架中,我们将输出空间中的理由抽样确定为可鲁棒提高性能的关键组成部分。该框架是一般的,可以轻松地扩展到常见的自然语言处理任务,即使传统上不利于中间步骤的任务,例如问题回答,单词感官歧义和情感分析。我们证明,与现有的提示方法相比,以理由为原理的合奏获得了更准确和可解释的结果 - 包括标准提示,没有理由和基于理由的链链链,同时通过相关理性同时提高了模型预测的解释性。
translated by 谷歌翻译
Language models (LMs) have demonstrated remarkable performance on downstream tasks, using in-context exemplars or human instructions. Recent works have shown that chain-of-thought (CoT) prompting can elicit models to solve complex reasoning tasks, step-by-step. However, the efficacy of prompt-based CoT methods is restricted to very large LMs such as GPT-3 (175B), thus limiting deployability. In this paper, we revisit the fine-tuning approach to enable complex reasoning in smaller LMs, optimized to efficiently perform a specific task. We propose Fine-tune-CoT, a method that leverages the capabilities of very large LMs to generate reasoning samples and teach smaller models via fine-tuning. We evaluate our method on publicly available LMs across a wide range of complex tasks and model sizes. We find that Fine-tune-CoT enables substantial reasoning capability in small models, whereas previous prompt-based baselines exhibit near-random performance. Student models can even outperform the teacher in some tasks while reducing model size requirements by several orders of magnitude. We conduct extensive ablations and sample studies to understand the reasoning capabilities of student models. We also identify several important nuances that have been overlooked in concurrent fine-tuning works on CoT and address them in our analysis.
translated by 谷歌翻译
我们探索如何产生一系列思想 - 一系列中间推理步骤 - 显着提高了大语言模型执行复杂推理的能力。特别是,我们通过一种称为“思想链”提示的简单方法在足够大的语言模型中自然出现这种推理能力,在此过程中,一些思想示范被作为提示的示例提供了。三种大语模型的实验表明,促使思想链提高了一系列算术,常识和象征性推理任务的性能。经验收益可能会引人注目。例如,仅使用八个思想范围的540B参数语言模型才能在数学单词问题的GSM8K基准上实现最新的精度,甚至超过了带有验证器的Fineted GPT-3。
translated by 谷歌翻译
Despite the success of large language models (LLMs) in various natural language processing (NLP) tasks, the stored knowledge in these models may inevitably be incomplete, out-of-date, or incorrect. This motivates the need to utilize external knowledge to assist LLMs. Unfortunately, current methods for incorporating external knowledge often require additional training or fine-tuning, which can be costly and may not be feasible for LLMs. To address this issue, we propose a novel post-processing approach, rethinking with retrieval (RR), which retrieves relevant external knowledge based on the decomposed reasoning steps obtained from the chain-of-thought (CoT) prompting. This lightweight approach does not require additional training or fine-tuning and is not limited by the input length of LLMs. We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks: commonsense reasoning, temporal reasoning, and tabular reasoning. Our results show that RR can produce more faithful explanations and improve the performance of LLMs.
translated by 谷歌翻译
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
translated by 谷歌翻译
预处理的大语言模型(LLM)广泛用于自然语言处理(NLP)的许多子场,通常被称为具有特定任务示例的优秀少数学习者。值得注意的是,思想链(COT)提示,这是一种通过分步答案示例引发复杂的多步推理的技术,在算术和符号推理中实现了最新的表演,难以置信的System-2任务不遵循LLMS的标准缩放定律。尽管这些成功通常归因于LLM的几次学习能力,但我们表明,LLM是通过在每个答案之前简单地添加“让我们逐步思考”而成为不错的零射击推理者。实验结果表明,使用相同的单个提示模板,我们的零射击功能明显优于零摄像机LLM在不同的基准推理任务上的零摄像机表现,包括算术(Multiarith,GSM8K,Aqua-Rat,SVAMP,SVAMP),符号推理(最后一个字母,字母,字母,字母,,,,,字母,字母)(最后一个字母),硬币翻转)和其他逻辑推理任务(日期理解,跟踪洗牌对象),而没有任何手工制作的几个示例,例如通过175B参数指令gpt模型将Multiarith的准确性从17.7%提高到78.7%,GSM8K从10.4%提高到40.7%,以及另一种现成的大型模型,540B参数Palm Palm的相似改进。在非常多样化的推理任务中,这个单一提示的多功能性暗示了LLM的尚未开发和研究的基本零拍功能,这表明可以通过简单提示来提取高级,多任务的广泛认知能力。我们希望我们的工作不仅可以作为具有挑战性的推理基准的最小零击基线,而且还强调了仔细探索和分析LLM中隐藏在LLM中的巨大的零拍知识的重要性,然后在制作Finetunning数据集或少数拍摄的典范之前。
translated by 谷歌翻译
在维持预审预定序列模型的灵活性的同时,是否有利于常识性推理,这仍然是一个悬而未决的问题。为了调查这个问题,我们开发了生成的知识提示,该提示包括从语言模型中生成知识,然后在回答问题时提供知识作为附加输入。我们的方法不需要特定于任务的监督知识集成或访问结构化的知识库,但它可以提高四个常识性推理任务上的大规模,最先进的模型的性能,从而实现最先进-ART结果取决于数值常识(NumerSense),通用常识性(Commonsenseqa 2.0)和科学常识(QASC)基准。产生的知识促使大型语言模型是灵活的外部知识来源,以改善常识性推理。我们的代码可从https://github.com/liujch1998/gkp获得
translated by 谷歌翻译
Current large language models can perform reasonably well on complex tasks that require step-by-step reasoning with few-shot learning. Are these models applying reasoning skills they have learnt during pre-training and reason outside of their training context, or are they simply memorizing their training corpus at finer granularity and have learnt to better understand their context? To tease apart these possibilities, we introduce ALERT, a benchmark and suite of analyses for assessing language models' reasoning ability comparing pre-trained and finetuned models on complex tasks that require reasoning skills to solve. ALERT provides a test bed to asses any language model on fine-grained reasoning skills, which spans over 20 datasets and covers 10 different reasoning skills. We leverage ALERT to further investigate the role of finetuning. With extensive empirical analysis we find that language models learn more reasoning skills such as textual entailment, abductive reasoning, and analogical reasoning during finetuning stage compared to pretraining state. We also find that when language models are finetuned they tend to overfit to the prompt template, which hurts the robustness of models causing generalization problems.
translated by 谷歌翻译
Large language models that are capable of zero or few-shot prompting approaches have given rise to the new research area of prompt engineering. Recent advances showed that for example Chain-of-Thought (CoT) prompts can improve arithmetic or common sense tasks significantly. We explore how such approaches fair with legal reasoning tasks and take the COLIEE entailment task based on the Japanese Bar exam for testing zero-shot/few-shot and fine-tuning approaches. Our findings show that while CoT prompting and fine-tuning with explanations approaches show improvements, the best results are produced by prompts that are derived from specific legal reasoning techniques such as IRAC (Issue, Rule, Application, Conclusion). Based on our experiments we improve the 2021 best result from 0.7037 accuracy to 0.8148 accuracy and beat the 2022 best system of 0.6789 accuracy with an accuracy of 0.7431.
translated by 谷歌翻译
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
translated by 谷歌翻译
Large-scale pre-trained language models (PLMs) bring new opportunities to challenge problems, especially those that need high-level intelligence, such as the math word problem (MWPs). However, directly applying existing PLMs to MWPs can fail as the generation process lacks sufficient supervision and thus lacks fast adaptivity as humans. We notice that human reasoning has a dual reasoning framework that consists of an immediate reaction system (system 1) and a delicate reasoning system (system 2), where the entire reasoning is determined by their interaction. This inspires us to develop a cooperative reasoning-induced PLM for solving MWPs, called Cooperative Reasoning (CoRe), resulting in a human-like reasoning architecture with system 1 as the generator and system 2 as the verifier. In our approach, the generator is responsible for generating reasoning paths, and the verifiers are used to supervise the evaluation in order to obtain reliable feedback for the generator. We evaluate our CoRe framework on several mathematical reasoning datasets and achieve decent improvement over state-of-the-art methods, up to 9.8% increase over best baselines.
translated by 谷歌翻译
Pre-trained language models (LMs) have shown remarkable reasoning performance using explanations (or ``chain-of-thought'' (CoT)) for in-context learning. On the other hand, these reasoning tasks are usually presumed to be more approachable for symbolic programming. To make progress towards understanding in-context learning, we curate synthetic datasets containing equivalent (natural, symbolic) data pairs, where symbolic examples contain first-order logic rules and predicates from knowledge bases (KBs). Then we revisit neuro-symbolic approaches and use Language Models as Logic Programmer (LMLP) that learns from demonstrations containing logic rules and corresponding examples to iteratively reason over KBs, recovering Prolog's backward chaining algorithm. Comprehensive experiments are included to systematically compare LMLP with CoT in deductive reasoning settings, showing that LMLP enjoys more than 25% higher accuracy than CoT on length generalization benchmarks even with fewer parameters.
translated by 谷歌翻译
大型语言模型在零拍摄设置中的许多自然语言处理(NLP)任务中表现出令人印象深刻的性能。我们询问这些模型是否展示了致辞语言 - NLP应用的关键组成部分 - 通过评估四个偶数基准的模型。我们发现大型语言模型的令人印象深刻的零射击性能主要是由于我们的基准测试中的数据集偏差。我们还表明,零拍摄性能对基准的超参数和相似性敏感到预训练数据集。此外,当在几次拍摄设置中评估模型时,我们没有观察大量改进。最后,与以前的工作相比,我们发现利用明确的致辞知识并没有产生重大改善。
translated by 谷歌翻译
语言模型在需要自然语言理解的各种任务上取得了非凡的表现。然而,最先进的模型通常在需要定量推理的任务上挣扎,例如在大学一级解决数学,科学和工程问题。为了帮助缩小这一差距,我们介绍了Minerva,Minerva是一种在一般自然语言数据上鉴定的大型语言模型,并进一步培训了技术内容。该模型在不使用外部工具的情况下实现了技术基准测试的最新性能。我们还评估了我们在需要定量推理的物理学,生物学,化学,经济学和其他科学方面的200多个本科生问题上评估我们的模型,并发现该模型可以正确回答其中几乎三分之一。
translated by 谷歌翻译
推理是人类认知和智力的关键支柱。在过去的十年中,我们目睹了自然语言处理的巨大收益和大型语言模型的前所未有的缩放。最近的工作表征了很少射击技术的能力,例如思想链,可以在大语言模型中模仿人类的推理。这个标志性的功能很少,连同不断扩展的语言模型相结合,打开了解决各种任务的可能性的远景,例如数学单词问题,代码完成和常识性推理。促使思想链(COT)通过提供中间步骤并敦促模型遵循相同的过程,从而进一步推动了模型的性能。尽管具有令人信服的性能,但在这些模型中推理能力的起源却很少探索。这项工作启动了对大语言模型中推理机制的更深入了解的初步步骤。我们的工作围绕查询模型,同时在提示中控制除一个组件以外的所有组件外:符号,模式和文本。然后,我们分析查询之间的性能差异。我们的结果表明,在提示中存在事实模式对于COT的成功并不是必需的。尽管如此,我们从经验上表明,仅依靠模式也不足以获得高质量的结果。我们认为文本具有常识性知识和意义。我们详尽的经验分析提供了定性的例子,说明了文本和模式之间的共生关系。这种对COT的系统理解使我们能够设计简洁的思想链,被称为CCOT,在其中修剪文本和模式只能保留其关键角色,同时以PAR或更高的求解任务率交付。
translated by 谷歌翻译
Chain of thought prompting successfully improves the reasoning capabilities of large language models, achieving state of the art results on a range of datasets. However, these reasoning capabilities only appear to emerge in models with a size of over 100 billion parameters. In this paper, we explore the transfer of such reasoning capabilities to models with less than 100 billion parameters via knowledge distillation. Specifically, we finetune a student model on the chain of thought outputs generated by a larger teacher model. Our experiments show that the proposed method improves task performance across arithmetic, commonsense and symbolic reasoning datasets. For example, the accuracy of T5 XXL on GSM8K improves from 8.11% to 21.99% when finetuned on PaLM-540B generated chains of thought.
translated by 谷歌翻译