Hyperparameter tuning is critical to the success of federated learning applications. Unfortunately, appropriately selecting hyperparameters is challenging in federated networks. Issues of scale, privacy, and heterogeneity introduce noise in the tuning process and make it difficult to evaluate the performance of various hyperparameters. In this work, we perform the first systematic study on the effect of noisy evaluation in federated hyperparameter tuning. We first identify and rigorously explore key sources of noise, including client subsampling, data and systems heterogeneity, and data privacy. Surprisingly, our results indicate that even small amounts of noise can significantly impact tuning methods-reducing the performance of state-of-the-art approaches to that of naive baselines. To address noisy evaluation in such scenarios, we propose a simple and effective approach that leverages public proxy data to boost the evaluation signal. Our work establishes general challenges, baselines, and best practices for future work in federated hyperparameter tuning.
translated by 谷歌翻译
可扩展性和隐私是交叉设备联合学习(FL)系统的两个关键问题。在这项工作中,我们确定了FL中的客户端更新的同步流动聚合不能高效地缩放到几百个并行培训之外。它导致ModelPerforce和训练速度的回报递减,Ampanysto大批量培训。另一方面,FL(即异步FL)中的客户端更新的异步聚合减轻了可扩展性问题。但是,聚合个性链子更新与安全聚合不兼容,这可能导致系统的不良隐私水平。为了解决这些问题,我们提出了一种新颖的缓冲异步聚合方法FedBuff,这是不可知的优化器的选择,并结合了同步和异步FL的最佳特性。我们经验证明FEDBuff比同步FL更有效,比异步FL效率更高3.3倍,同时兼容保留保护技术,如安全聚合和差异隐私。我们在平滑的非凸设置中提供理论融合保证。最后,我们显示在差异私有培训下,FedBuff可以在低隐私设置下占FEDAVGM并实现更高隐私设置的相同实用程序。
translated by 谷歌翻译
个性化联合学习认为在异质网络中每个客户独有的学习模型。据称,最终的客户特定模型是为了改善联合网络中的准确性,公平性和鲁棒性等指标。但是,尽管该领域有很多工作,但仍不清楚:(1)哪些个性化技术在各种环境中最有效,以及(2)个性化对现实的联合应用程序的真正重要性。为了更好地回答这些问题,我们提出了Motley,这是个性化联合学习的基准。 Motley由一套来自各种问题域的跨设备和跨核管联合数据集组成,以及彻底的评估指标,以更好地理解个性化的可能影响。我们通过比较许多代表性的个性化联合学习方法来建立基准基准。这些最初的结果突出了现有方法的优势和劣势,并为社区提出了几个开放问题。 Motley旨在提供一种可再现的手段,以推进个性化和异质性的联合学习以及转移学习,元学习和多任务学习的相关领域。
translated by 谷歌翻译
经常引用联合学习的挑战是数据异质性的存在 - 不同客户的数据可能遵循非常不同的分布。已经提出了几种联合优化方法来应对这些挑战。在文献中,经验评估通常从随机初始化开始联合培训。但是,在联合学习的许多实际应用中,服务器可以访问培训任务的代理数据,该数据可用于在开始联合培训之前用于预训练模型。我们从经验上研究了使用四个常见联合学习基准数据集从联邦学习中的预训练模型开始的影响。毫不奇怪,从预先训练的模型开始,比从随机初始化开始时,缩短了达到目标错误率所需的训练时间,并使训练更准确的模型(最高40 \%)。令人惊讶的是,我们还发现,从预先训练的初始化开始联合培训时,数据异质性的效果不那么重要。相反,从预先训练的模型开始时,使用服务器上的自适应优化器(例如\ textsc {fedadam})始终导致最佳准确性。我们建议未来提出和评估联合优化方法的工作在开始随机和预训练的初始化时考虑性能。我们还认为,这项研究提出了几个问题,以进一步了解异质性在联合优化中的作用。
translated by 谷歌翻译
联合学习(FL)可以对机器学习模型进行分布式培训,同时将个人数据保存在用户设备上。尽管我们目睹了FL在移动传感领域的越来越多的应用,例如人类活动识别(HAR),但在多设备环境(MDE)的背景下,尚未对FL进行研究,其中每个用户都拥有多个数据生产设备。随着移动设备和可穿戴设备的扩散,MDE在Ubicomp设置中越来越受欢迎,因此需要对其中的FL进行研究。 MDE中的FL的特征是在客户和设备异质性的存在中并不复杂,并不是独立的,并且在客户端之间并非独立分布(非IID)。此外,确保在MDE中有效利用佛罗里达州客户的系统资源仍然是一个重要的挑战。在本文中,我们提出了以用户为中心的FL培训方法来应对MDE中的统计和系统异质性,并在设备之间引起推理性能的一致性。火焰功能(i)以用户为中心的FL培训,利用同一用户的设备之间的时间对齐; (ii)准确性和效率感知设备的选择; (iii)对设备的个性化模型。我们还提出了具有现实的能量流量和网络带宽配置文件的FL评估测试,以及一种基于类的新型数据分配方案,以将现有HAR数据集扩展到联合设置。我们在三个多设备HAR数据集上的实验结果表明,火焰的表现优于各种基准,F1得分高4.3-25.8%,能源效率提高1.02-2.86倍,并高达2.06倍的收敛速度,以通过FL的公平分布来获得目标准确性工作量。
translated by 谷歌翻译
Federated learning (FL) has been proposed as a privacy-preserving approach in distributed machine learning. A federated learning architecture consists of a central server and a number of clients that have access to private, potentially sensitive data. Clients are able to keep their data in their local machines and only share their locally trained model's parameters with a central server that manages the collaborative learning process. FL has delivered promising results in real-life scenarios, such as healthcare, energy, and finance. However, when the number of participating clients is large, the overhead of managing the clients slows down the learning. Thus, client selection has been introduced as a strategy to limit the number of communicating parties at every step of the process. Since the early na\"{i}ve random selection of clients, several client selection methods have been proposed in the literature. Unfortunately, given that this is an emergent field, there is a lack of a taxonomy of client selection methods, making it hard to compare approaches. In this paper, we propose a taxonomy of client selection in Federated Learning that enables us to shed light on current progress in the field and identify potential areas of future research in this promising area of machine learning.
translated by 谷歌翻译
联合学习是一种在不违反隐私限制的情况下对分布式数据集进行统计模型培训统计模型的最新方法。通过共享模型而不是客户和服务器之间的数据来保留数据位置原则。这带来了许多优势,但也带来了新的挑战。在本报告中,我们探讨了这个新的研究领域,并执行了几项实验,以加深我们对这些挑战的理解以及不同的问题设置如何影响最终模型的性能。最后,我们为这些挑战之一提供了一种新颖的方法,并将其与文献中的其他方法进行了比较。
translated by 谷歌翻译
虽然差异隐私的应用(DP)在联合学习(FL)方面进行了充分研究,但考虑到跨索洛FL的DP缺乏工作,该设置的特征是有限数量的客户,每个客户都包含许多人数据主体。在跨索洛fl中,由于现实世界中的隐私法规,通常涉及核心数据主体,而不是孤岛本身,因此客户级隐私的通常概念不太适合。在这项工作中,我们相反,考虑了更现实的孤岛特定项目级隐私的概念,其中筒仓为当地示例设定了自己的隐私目标。在这种情况下,我们重新考虑了个性化在联合学习中的作用。特别是,我们表明,均值进行的多任务学习(MR-MTL)是一个简单的个性化框架,是跨索洛FL的强大基准:在更强的隐私下,孤岛进一步激励彼此“联合”以互相“联合”减轻DP噪声,相对于标准基线方法,导致一致的改进。我们为竞争方法以及MR-MTL的理论表征提供了一项彻底的经验研究,以实现平均估计问题,从而突出了隐私与跨核数据异质性之间的相互作用。我们的工作旨在为私人跨索洛FL建立基准,并确定该领域未来工作的关键方向。
translated by 谷歌翻译
调整Quand参数是机器学习管道的重要而艰巨的部分。在联合学习中,封锁率优化更具挑战性,在多均匀设备的分布式网络上学习模型;在这里,需要保留设备上的数据并执行本地培训使得难以有效地培训和评估配置。在这项工作中,我们调查联邦封面调整的问题。我们首先识别关键挑战,并展示标准方法如何适应联合环境的基线。然后,通过与重量共享的神经结构搜索技术进行新颖的连接,我们介绍了一种新的方法,联邦快递,以加速联合的超参数调整,该调整适用于广泛使用的联合优化方法,例如FADVG和最近的变体。从理论上讲,我们表明联邦快递器在跨设备的在线凸优化的设置中正确调整了在设备上的学习速率。凭经验,我们表明,联邦快递可以在莎士比亚,春头和CIFAR-10基准上的几个百分点占据联邦封面调整的自然基线,使用相同的培训预算获得更高的准确性。
translated by 谷歌翻译
联合学习(FL)作为边缘设备的有希望的技术,以协作学习共享预测模型,同时保持其训练数据,从而解耦了从需要存储云中的数据的机器学习的能力。然而,在规模和系统异质性方面,FL难以现实地实现。虽然有许多用于模拟FL算法的研究框架,但它们不支持在异构边缘设备上进行可扩展的流程。在本文中,我们呈现花 - 一种全面的FL框架,通过提供新的设施来执行大规模的FL实验并考虑丰富的异构流程来区分现有平台。我们的实验表明花卉可以仅使用一对高端GPU在客户尺寸下进行FL实验。然后,研究人员可以将实验无缝地迁移到真实设备中以检查设计空间的其他部分。我们认为花卉为社区提供了一个批判性的新工具,用于研究和发展。
translated by 谷歌翻译
隐私和沟通效率是联邦神经网络培训中的重要挑战,并将它们组合仍然是一个公开的问题。在这项工作中,我们开发了一种统一高度压缩通信和差异隐私(DP)的方法。我们引入基于相对熵编码(REC)到联合设置的压缩技术。通过对REC进行微小的修改,我们获得了一种可怕的私立学习算法,DP-REC,并展示了如何计算其隐私保证。我们的实验表明,DP-REC大大降低了通信成本,同时提供与最先进的隐私保证。
translated by 谷歌翻译
高参数优化(HPO)对于机器学习算法以实现令人满意的性能至关重要,其进度已被相关基准增强。尽管如此,现有的努力在基准基准的方面都专注于HPO,同时忽略了联合学习(FL),这是从分散数据中进行协作学习模型的有希望的范式。在本文中,我们首先从各个方面确定了FL算法的HPO唯一性。由于这种唯一性,现有的HPO基准不再满足比较FL设置中HPO方法的需求。为了促进HPO在FL环境中的研究,我们提出并实施了一个基准套件FedHPO-B,该基准套件融合了全面的FL任务,实现了有效的功能评估,并简化了持续的扩展。我们还基于FEDHPO-B进行了广泛的实验,以基准一些HPO方法。我们在https://github.com/alibaba/federatedscope/tree/master/master/master/benchmark/fedhpob上开放Source Fedhpo-b。
translated by 谷歌翻译
尽管结果令人印象深刻,但深度学习的技术还引起了经常在数据中心进行的培训程序引起的严重隐私和环境问题。作为回应,已经出现了集中培训的替代方案,例如联邦学习(FL)。也许出乎意料的是,FL开始在全球范围内部署,这些公司必须遵守源自倡导隐私保护的政府和社会团体的新法律要求和政策。 \ textit {但是,与FL有关的潜在环境影响仍然不清楚和未开发。本文提供了有关佛罗里达碳足迹的首次系统研究。然后,我们将FL的碳足迹与传统的集中学习进行了比较。我们的发现表明,根据配置,FL可以比集中的机器学习高达两个数量级。但是,在某些情况下,由于嵌入式设备的能源消耗减少,它可以与集中学习相提并论。我们使用FL进行了不同类型的数据集,设置和各种深度学习模型的广泛实验。最后,我们强调并将报告的结果与FL的未来挑战和趋势联系起来,以减少其环境影响,包括算法效率,硬件能力和更强的行业透明度。
translated by 谷歌翻译
联合学习通常用于容易获得标签的任务(例如,下一个单词预测)。放松这种约束需要设计无监督的学习技术,该技术可以支持联合培训的理想特性:稳健性对统计/系统异质性,可伸缩性与参与者数量以及沟通效率。关于该主题的先前工作集中在直接扩展集中式的自我监督学习技术上,这些学习技术并非旨在具有上面列出的属性。为了解决这种情况,我们提出了乐团,这是一种新颖的无监督联盟学习技术,利用联邦的层次结构来协调分布式的聚类任务,并将客户数据对客户数据的全球始终划分为可区分的群集。我们显示了管弦乐队中的算法管道可确保在线性探针下良好的概括性能,从而使其在广泛的条件下胜过替代技术,包括异质性,客户次数,参与率和本地时期的变化。
translated by 谷歌翻译
Federated learning seeks to address the issue of isolated data islands by making clients disclose only their local training models. However, it was demonstrated that private information could still be inferred by analyzing local model parameters, such as deep neural network model weights. Recently, differential privacy has been applied to federated learning to protect data privacy, but the noise added may degrade the learning performance much. Typically, in previous work, training parameters were clipped equally and noises were added uniformly. The heterogeneity and convergence of training parameters were simply not considered. In this paper, we propose a differentially private scheme for federated learning with adaptive noise (Adap DP-FL). Specifically, due to the gradient heterogeneity, we conduct adaptive gradient clipping for different clients and different rounds; due to the gradient convergence, we add decreasing noises accordingly. Extensive experiments on real-world datasets demonstrate that our Adap DP-FL outperforms previous methods significantly.
translated by 谷歌翻译
本文提出并表征了联合学习(OARF)的开放应用程序存储库,是联合机器学习系统的基准套件。以前可用的联合学习基准主要集中在合成数据集上,并使用有限数量的应用程序。 OARF模仿更现实的应用方案,具有公开的数据集,如图像,文本和结构数据中的不同数据孤岛。我们的表征表明,基准套件在数据大小,分布,特征分布和学习任务复杂性中多样化。与参考实施的广泛评估显示了联合学习系统的重要方面的未来研究机会。我们开发了参考实现,并评估了联合学习的重要方面,包括模型准确性,通信成本,吞吐量和收敛时间。通过这些评估,我们发现了一些有趣的发现,例如联合学习可以有效地提高端到端吞吐量。
translated by 谷歌翻译
联邦学习〜(FL)最近引起了学术界和行业的越来越多的关注,其最终目标是在隐私和沟通限制下进行协作培训。现有的基于FL算法的现有迭代模型需要大量的通信回合,以获得良好的模型,这是由于不同客户之间的极为不平衡和非平衡的I.D数据分配。因此,我们建议FedDM从多个本地替代功能中构建全球培训目标,这使服务器能够获得对损失格局的更全球视野。详细说明,我们在每个客户端构建了合成数据集,以在本地匹配从原始数据到分发匹配的损失景观。与笨拙的模型权重相比,FedDM通过传输更多信息和较小的合成数据来降低通信回合并提高模型质量。我们对三个图像分类数据集进行了广泛的实验,结果表明,在效率和模型性能方面,我们的方法可以优于其他FL的实验。此外,我们证明,FedDM可以适应使用高斯机制来保护差异隐私,并在相同的隐私预算下训练更好的模型。
translated by 谷歌翻译
我们展示了一个联合学习框架,旨在强大地提供具有异构数据的各个客户端的良好预测性能。所提出的方法对基于SuperQualile的学习目标铰接,捕获异构客户端的误差分布的尾统计。我们提出了一种随机训练算法,其与联合平均步骤交织差异私人客户重新重量步骤。该提出的算法支持有限时间收敛保证,保证覆盖凸和非凸面设置。关于联邦学习的基准数据集的实验结果表明,我们的方法在平均误差方面与古典误差竞争,并且在误差的尾统计方面优于它们。
translated by 谷歌翻译
Federated learning involves training statistical models over remote devices or siloed data centers, such as mobile phones or hospitals, while keeping data localized. Training in heterogeneous and potentially massive networks introduces novel challenges that require a fundamental departure from standard approaches for large-scale machine learning, distributed optimization, and privacy-preserving data analysis. In this article, we discuss the unique characteristics and challenges of federated learning, provide a broad overview of current approaches, and outline several directions of future work that are relevant to a wide range of research communities.
translated by 谷歌翻译
为了保留用户隐私,在实现移动智能的同时,已经提出了技术来培训有关分散数据的深神经网络。但是,对分散数据的培训使神经体系结构的设计非常困难。在设计和部署异质移​​动平台的不同神经体系结构时,这种困难将进一步扩大。在这项工作中,我们提出了一个自动的神经体系结构搜索,以分散的培训,这是一种新的DNN培训范式,称为联合神经建筑搜索,即Federated Nas。为了应对有限的客户计算和通信资源的主要挑战,我们提出了FedNAS,这是一个高度优化的有效联合NAS的框架。 FedNAS充分利用了在建筑搜索过程中重新训练模型候选人不足的关键机会,并结合了三个关键的优化:对偏见客户培训的平行候选人,早期降低了较不优点的候选人和动态的回合数。在大规模数据集和典型的CNN体​​系结构上测试,FedNAS可以达到可比较的模型精度作为最先进的NAS NAS算法,该算法训练具有集中式数据的模型,并且与直接的直线相比,最多将客户成本降低了两个幅度。联邦NAS的设计。
translated by 谷歌翻译