深层神经网络能够轻松地使用软磁横层(CE)丢失来记住嘈杂的标签。先前的研究试图解决此问题的重点是将噪声损失函数纳入CE损失。但是,记忆问题得到了缓解,但仍然由于非持鲁棒的损失而造成的。为了解决这个问题,我们专注于学习可靠的对比度表示数据,分类器很难记住CE损失下的标签噪声。我们提出了一种新颖的对比正则化函数,以通过标签噪声不主导表示表示的嘈杂数据来学习此类表示。通过理论上研究由提议的正则化功能引起的表示形式,我们揭示了学识渊博的表示形式将信息保留与真实标签和丢弃与损坏标签相关的信息有关的信息。此外,我们的理论结果还表明,学到的表示形式对标签噪声是可靠的。通过基准数据集的实验证明了该方法的有效性。
translated by 谷歌翻译
Training accurate deep neural networks (DNNs) in the presence of noisy labels is an important and challenging task. Though a number of approaches have been proposed for learning with noisy labels, many open issues remain. In this paper, we show that DNN learning with Cross Entropy (CE) exhibits overfitting to noisy labels on some classes ("easy" classes), but more surprisingly, it also suffers from significant under learning on some other classes ("hard" classes). Intuitively, CE requires an extra term to facilitate learning of hard classes, and more importantly, this term should be noise tolerant, so as to avoid overfitting to noisy labels. Inspired by the symmetric KL-divergence, we propose the approach of Symmetric cross entropy Learning (SL), boosting CE symmetrically with a noise robust counterpart Reverse Cross Entropy (RCE). Our proposed SL approach simultaneously addresses both the under learning and overfitting problem of CE in the presence of noisy labels. We provide a theoretical analysis of SL and also empirically show, on a range of benchmark and real-world datasets, that SL outperforms state-of-the-art methods. We also show that SL can be easily incorporated into existing methods in order to further enhance their performance.
translated by 谷歌翻译
深神经网络(DNN)的记忆效应在最近的标签噪声学习方法中起关键作用。为了利用这种效果,已经广泛采用了基于模型预测的方法,该方法旨在利用DNN在学习的早期阶段以纠正嘈杂标签的效果。但是,我们观察到该模型在标签预测期间会犯错误,从而导致性能不令人满意。相比之下,在学习早期阶段产生的特征表现出更好的鲁棒性。受到这一观察的启发,在本文中,我们提出了一种基于特征嵌入的新方法,用于用标签噪声,称为标签NoissiLution(Lend)。要具体而言,我们首先根据当前的嵌入式特征计算一个相似性矩阵,以捕获训练数据的局部结构。然后,附近标记的数据(\ textIt {i.e。},标签噪声稀释)使错误标记的数据携带的嘈杂的监督信号淹没了,其有效性是由特征嵌入的固有鲁棒性保证的。最后,带有稀释标签的培训数据进一步用于培训强大的分类器。从经验上讲,我们通过将我们的贷款与几种代表性的强大学习方法进行比较,对合成和现实世界嘈杂数据集进行了广泛的实验。结果验证了我们贷款的有效性。
translated by 谷歌翻译
最近已证明自我监督的对比学习(CL)非常有效地防止深网贴上嘈杂的标签。尽管取得了经验成功,但对对比度学习对增强鲁棒性的影响的理论理解非常有限。在这项工作中,我们严格地证明,通过对比度学习学到的表示矩阵可以通过:(i)与数据中每个子类相对应的一个突出的奇异值来增强鲁棒性,并显着较小的剩余奇异值; (ii){{显着的单数矢量与每个子类的干净标签之间的一个很大的对齐。以上属性使对此类表示的线性层能够有效地学习干净的标签,而不会过度适应噪音。}我们进一步表明,通过对比度学习预先训练的深网的雅各比式的低级别结构使他们能够获得优越的最初的性能是在嘈杂的标签上进行微调时。最后,我们证明了对比度学习提供的最初鲁棒性使鲁棒训练方法能够在极端噪声水平下实现最先进的性能,例如平均27.18 \%\%和15.58 \%\%\%\%\%cifar-10上的提高和80 \%对称嘈杂标签的CIFAR-100,网络视频的准确性提高4.11 \%。
translated by 谷歌翻译
可以将监督学习视为将相关信息从输入数据中提取到特征表示形式。当监督嘈杂时,此过程变得困难,因为蒸馏信息可能无关紧要。实际上,最近的研究表明,网络可以轻松地过度贴合所有标签,包括损坏的标签,因此几乎无法概括以清洁数据集。在本文中,我们专注于使用嘈杂的标签学习的问题,并将压缩归纳偏置引入网络体系结构以减轻这种过度的问题。更确切地说,我们重新审视一个名为辍学的经典正则化及其变体嵌套辍学。辍学可以作为其功能删除机制的压缩约束,而嵌套辍学进一步学习有序的特征表示W.R.T.特征重要性。此外,具有压缩正则化的训练有素的模型与共同教学相结合,以提高性能。从理论上讲,我们在压缩正则化下对目标函数进行偏置变化分解。我们分析了单个模型和共同教学。该分解提供了三个见解:(i)表明过度合适确实是使用嘈杂标签学习的问题; (ii)通过信息瓶颈配方,它解释了为什么提出的特征压缩有助于对抗标签噪声; (iii)它通过将压缩正规化纳入共同教学而带来的性能提升提供了解释。实验表明,我们的简单方法比具有现实世界标签噪声(包括服装1M和Animal-10N)的基准测试标准的最先进方法具有可比性甚至更好的性能。我们的实施可在https://yingyichen-cyy.github.io/compressfatsfeatnoisylabels/上获得。
translated by 谷歌翻译
In the presence of noisy labels, designing robust loss functions is critical for securing the generalization performance of deep neural networks. Cross Entropy (CE) loss has been shown to be not robust to noisy labels due to its unboundedness. To alleviate this issue, existing works typically design specialized robust losses with the symmetric condition, which usually lead to the underfitting issue. In this paper, our key idea is to induce a loss bound at the logit level, thus universally enhancing the noise robustness of existing losses. Specifically, we propose logit clipping (LogitClip), which clamps the norm of the logit vector to ensure that it is upper bounded by a constant. In this manner, CE loss equipped with our LogitClip method is effectively bounded, mitigating the overfitting to examples with noisy labels. Moreover, we present theoretical analyses to certify the noise-tolerant ability of LogitClip. Extensive experiments show that LogitClip not only significantly improves the noise robustness of CE loss, but also broadly enhances the generalization performance of popular robust losses.
translated by 谷歌翻译
自数据注释(尤其是对于大型数据集)以来,使用嘈杂的标签学习引起了很大的研究兴趣,这可能不可避免地不可避免。最近的方法通过将培训样本分为清洁和嘈杂的集合来求助于半监督的学习问题。然而,这种范式在重标签噪声下容易出现重大变性,因为干净样品的数量太小,无法进行常规方法。在本文中,我们介绍了一个新颖的框架,称为LC-Booster,以在极端噪音下明确处理学习。 LC-Booster的核心思想是将标签校正纳入样品选择中,以便可以通过可靠的标签校正来培训更纯化的样品,从而减轻确认偏差。实验表明,LC-Booster在几个嘈杂标签的基准测试中提高了最先进的结果,包括CIFAR-10,CIFAR-100,CLASTINGING 1M和WEBVISION。值得注意的是,在极端的90 \%噪声比下,LC-Booster在CIFAR-10和CIFAR-100上获得了92.9 \%和48.4 \%的精度,超过了最终方法,较大的边距就超过了最终方法。
translated by 谷歌翻译
样品选择是减轻标签噪声在鲁棒学习中的影响的有效策略。典型的策略通常应用小损失标准来识别干净的样品。但是,这些样本位于决策边界周围,通常会与嘈杂的例子纠缠在一起,这将被此标准丢弃,从而导致概括性能的严重退化。在本文中,我们提出了一种新颖的选择策略,\ textbf {s} elf- \ textbf {f} il \ textbf {t} ering(sft),它利用历史预测中嘈杂的示例的波动来过滤它们,可以过滤它们,这可以是可以过滤的。避免在边界示例中的小损失标准的选择偏置。具体来说,我们介绍了一个存储库模块,该模块存储了每个示例的历史预测,并动态更新以支持随后的学习迭代的选择。此外,为了减少SFT样本选择偏置的累积误差,我们设计了一个正规化术语来惩罚自信的输出分布。通过通过此术语增加错误分类类别的重量,损失函数在轻度条件下标记噪声是可靠的。我们对具有变化噪声类型的三个基准测试并实现了新的最先进的实验。消融研究和进一步分析验证了SFT在健壮学习中选择样本的优点。
translated by 谷歌翻译
带有嘈杂标签的训练深神经网络(DNN)实际上是具有挑战性的,因为不准确的标签严重降低了DNN的概括能力。以前的努力倾向于通过识别带有粗糙的小损失标准来减轻嘈杂标签的干扰的嘈杂数据来处理统一的denoising流中的零件或完整数据,而忽略了嘈杂样本的困难是不同的,因此是刚性和统一的。数据选择管道无法很好地解决此问题。在本文中,我们首先提出了一种称为CREMA的粗到精细的稳健学习方法,以分裂和串扰的方式处理嘈杂的数据。在粗糙水平中,干净和嘈杂的集合首先从统计意义上就可信度分开。由于实际上不可能正确对所有嘈杂样本进行分类,因此我们通过对每个样本的可信度进行建模来进一步处理它们。具体而言,对于清洁集,我们故意设计了一种基于内存的调制方案,以动态调整每个样本在训练过程中的历史可信度顺序方面的贡献,从而减轻了错误地分组为清洁集中的嘈杂样本的效果。同时,对于分类为嘈杂集的样品,提出了选择性标签更新策略,以纠正嘈杂的标签,同时减轻校正错误的问题。广泛的实验是基于不同方式的基准,包括图像分类(CIFAR,Clothing1M等)和文本识别(IMDB),具有合成或自然语义噪声,表明CREMA的优势和普遍性。
translated by 谷歌翻译
作为标签噪声,最受欢迎的分布变化之一,严重降低了深度神经网络的概括性能,具有嘈杂标签的强大训练正在成为现代深度学习中的重要任务。在本文中,我们提出了我们的框架,在子分类器(ALASCA)上创造了自适应标签平滑,该框架提供了具有理论保证和可忽略的其他计算的可靠特征提取器。首先,我们得出标签平滑(LS)会产生隐式Lipschitz正则化(LR)。此外,基于这些推导,我们将自适应LS(ALS)应用于子分类器架构上,以在中间层上的自适应LR的实际应用。我们对ALASCA进行了广泛的实验,并将其与以前的几个数据集上的噪声燃烧方法相结合,并显示我们的框架始终优于相应的基线。
translated by 谷歌翻译
嘈杂的标签损坏了深网络的性能。为了稳健的学习,突出的两级管道在消除可能的不正确标签和半监督培训之间交替。然而,丢弃观察到的标签的部分可能导致信息丢失,尤其是当腐败不是完全随机的时,例如依赖类或实例依赖。此外,从代表性两级方法Dividemix的训练动态,我们确定了确认偏置的统治:伪标签未能纠正相当大量的嘈杂标签,因此累积误差。为了充分利用观察到的标签和减轻错误的校正,我们提出了强大的标签翻新(鲁棒LR)-a新的混合方法,该方法集成了伪标签和置信度估计技术来翻新嘈杂的标签。我们表明我们的方法成功减轻了标签噪声和确认偏差的损害。结果,它跨数据集和噪声类型实现最先进的结果。例如,强大的LR在真实世界嘈杂的数据集网络VIVION上以前最好的绝对高度提高了4.5%的绝对顶级精度改进。
translated by 谷歌翻译
标签昂贵,有时是不可靠的。嘈杂的标签学习,半监督学习和对比学习是三种不同的设计,用于设计需要更少的注释成本的学习过程。最近已经证明了半监督学习和对比学习,以改善使用嘈杂标签地址数据集的学习策略。尽管如此,这些领域之间的内部连接以及将它们的强度结合在一起的可能性仅开始出现。在本文中,我们探讨了融合它们的进一步方法和优势。具体而言,我们提出了CSSL,统一的对比半监督学习算法和Codim(对比DivideMix),一种用嘈杂标签学习的新算法。 CSSL利用经典半监督学习和对比学习技术的力量,并进一步适应了Codim,其从多种类型和标签噪声水平鲁莽地学习。我们表明Codim带来了一致的改进,并在多个基准上实现了最先进的结果。
translated by 谷歌翻译
使用嘈杂标签(LNL)学习旨在设计策略来通过减轻模型过度适应嘈杂标签的影响来提高模型性能和概括。 LNL的主要成功在于从大量嘈杂数据中识别尽可能多的干净样品,同时纠正错误分配的嘈杂标签。最近的进步采用了单个样品的预测标签分布来执行噪声验证和嘈杂的标签校正,很容易产生确认偏差。为了减轻此问题,我们提出了邻里集体估计,其中通过将其与其功能空间最近的邻居进行对比,重新估计了候选样本的预测性可靠性。具体而言,我们的方法分为两个步骤:1)邻域集体噪声验证,将所有训练样品分为干净或嘈杂的子集,2)邻里集体标签校正到Relabel嘈杂样品,然后使用辅助技术来帮助进一步的模型优化。 。在四个常用基准数据集(即CIFAR-10,CIFAR-100,Clothing-1M和WebVision-1.0)上进行了广泛的实验,这表明我们提出的方法非常优于最先进的方法。
translated by 谷歌翻译
深神经网络(DNN)的记忆效果在许多最先进的标签噪声学习方法中起着枢轴作用。为了利用这一财产,通常采用早期停止训练早期优化的伎俩。目前的方法通常通过考虑整个DNN来决定早期停止点。然而,DNN可以被认为是一系列层的组成,并且发现DNN中的后一个层对标签噪声更敏感,而其前同行是非常稳健的。因此,选择整个网络的停止点可以使不同的DNN层对抗彼此影响,从而降低最终性能。在本文中,我们建议将DNN分离为不同的部位,逐步培训它们以解决这个问题。而不是早期停止,它一次列举一个整体DNN,我们最初通过用相对大量的时期优化DNN来训练前DNN层。在培训期间,我们通过使用较少数量的时期使用较少的地层来逐步培训后者DNN层,以抵消嘈杂标签的影响。我们将所提出的方法术语作为渐进式早期停止(PES)。尽管其简单性,与早期停止相比,PES可以帮助获得更有前景和稳定的结果。此外,通过将PE与现有的嘈杂标签培训相结合,我们在图像分类基准上实现了最先进的性能。
translated by 谷歌翻译
The existence of label noise imposes significant challenges (e.g., poor generalization) on the training process of deep neural networks (DNN). As a remedy, this paper introduces a permutation layer learning approach termed PermLL to dynamically calibrate the training process of the DNN subject to instance-dependent and instance-independent label noise. The proposed method augments the architecture of a conventional DNN by an instance-dependent permutation layer. This layer is essentially a convex combination of permutation matrices that is dynamically calibrated for each sample. The primary objective of the permutation layer is to correct the loss of noisy samples mitigating the effect of label noise. We provide two variants of PermLL in this paper: one applies the permutation layer to the model's prediction, while the other applies it directly to the given noisy label. In addition, we provide a theoretical comparison between the two variants and show that previous methods can be seen as one of the variants. Finally, we validate PermLL experimentally and show that it achieves state-of-the-art performance on both real and synthetic datasets.
translated by 谷歌翻译
Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set, which well suits many real-world data annotation scenarios with label ambiguity. Despite the promise, the performance of PLL often lags behind the supervised counterpart. In this work, we bridge the gap by addressing two key research challenges in PLL -- representation learning and label disambiguation -- in one coherent framework. Specifically, our proposed framework PiCO consists of a contrastive learning module along with a novel class prototype-based label disambiguation algorithm. PiCO produces closely aligned representations for examples from the same classes and facilitates label disambiguation. Theoretically, we show that these two components are mutually beneficial, and can be rigorously justified from an expectation-maximization (EM) algorithm perspective. Moreover, we study a challenging yet practical noisy partial label learning setup, where the ground-truth may not be included in the candidate set. To remedy this problem, we present an extension PiCO+ that performs distance-based clean sample selection and learns robust classifiers by a semi-supervised contrastive learning algorithm. Extensive experiments demonstrate that our proposed methods significantly outperform the current state-of-the-art approaches in standard and noisy PLL tasks and even achieve comparable results to fully supervised learning.
translated by 谷歌翻译
在标签 - 噪声学习中,估计过渡矩阵是一个热门话题,因为矩阵在构建统计上一致的分类器中起着重要作用。传统上,从干净的标签到嘈杂的标签(即,清洁标签过渡矩阵(CLTM))已被广泛利用,以通过使用嘈杂的数据来学习干净的标签分类器。该分类器的动机主要是输出贝叶斯的最佳预测标签,在本文中,我们研究以直接建模从贝叶斯最佳标签过渡到嘈杂标签(即贝叶斯标签,贝叶斯标签,是BLTM)),并学习分类器以预测贝叶斯最佳的分类器标签。请注意,只有嘈杂的数据,它不足以估计CLTM或BLTM。但是,贝叶斯最佳标签与干净标签相比,贝叶斯最佳标签的不确定性较小,即,贝叶斯最佳标签的类后代是一热矢量,而干净标签的载体则不是。这使两个优点能够估算BLTM,即(a)一组具有理论上保证的贝叶斯最佳标签的示例可以从嘈杂的数据中收集; (b)可行的解决方案空间要小得多。通过利用优势,我们通过采用深层神经网络来估计BLTM参数,从而更好地概括和出色的分类性能。
translated by 谷歌翻译
在标签噪声下训练深神网络的能力很有吸引力,因为不完美的注释数据相对便宜。最先进的方法基于半监督学习(SSL),该学习选择小损失示例为清洁,然后应用SSL技术来提高性能。但是,选择步骤主要提供一个中等大小的清洁子集,该子集可俯瞰丰富的干净样品。在这项工作中,我们提出了一个新颖的嘈杂标签学习框架Promix,试图最大程度地提高清洁样品的实用性以提高性能。我们方法的关键是,我们提出了一种匹配的高信心选择技术,该技术选择了那些具有很高置信的示例,并与给定标签进行了匹配的预测。结合小损失选择,我们的方法能够达到99.27的精度,并在检测CIFAR-10N数据集上的干净样品时召回98.22。基于如此大的清洁数据,Promix将最佳基线方法提高了CIFAR-10N的 +2.67%,而CIFAR-100N数据集则提高了 +1.61%。代码和数据可从https://github.com/justherozen/promix获得
translated by 谷歌翻译
Deep Learning with noisy labels is a practically challenging problem in weakly supervised learning. The stateof-the-art approaches "Decoupling" and "Co-teaching+" claim that the "disagreement" strategy is crucial for alleviating the problem of learning with noisy labels. In this paper, we start from a different perspective and propose a robust learning paradigm called JoCoR, which aims to reduce the diversity of two networks during training. Specifically, we first use two networks to make predictions on the same mini-batch data and calculate a joint loss with Co-Regularization for each training example. Then we select small-loss examples to update the parameters of both two networks simultaneously. Trained by the joint loss, these two networks would be more and more similar due to the effect of Co-Regularization. Extensive experimental results on corrupted data from benchmark datasets including MNIST, CIFAR-10, CIFAR-100 and Clothing1M demonstrate that JoCoR is superior to many state-of-the-art approaches for learning with noisy labels.
translated by 谷歌翻译
Deep neural networks are known to be annotation-hungry. Numerous efforts have been devoted to reducing the annotation cost when learning with deep networks. Two prominent directions include learning with noisy labels and semi-supervised learning by exploiting unlabeled data. In this work, we propose DivideMix, a novel framework for learning with noisy labels by leveraging semi-supervised learning techniques. In particular, DivideMix models the per-sample loss distribution with a mixture model to dynamically divide the training data into a labeled set with clean samples and an unlabeled set with noisy samples, and trains the model on both the labeled and unlabeled data in a semi-supervised manner. To avoid confirmation bias, we simultaneously train two diverged networks where each network uses the dataset division from the other network. During the semi-supervised training phase, we improve the MixMatch strategy by performing label co-refinement and label co-guessing on labeled and unlabeled samples, respectively. Experiments on multiple benchmark datasets demonstrate substantial improvements over state-of-the-art methods. Code is available at https://github.com/LiJunnan1992/DivideMix.
translated by 谷歌翻译