我们考虑使用时间差异学习算法进行连续时间过程的政策评估问题。更确切地说,从随机微分方程的时间离散化,我们打算使用TD(0)学习连续的值函数。首先,我们证明标准TD(0)算法注定要失败,因为动力学的随机部分由于时间步骤趋于零。然后,我们提出对时间差的添加零均值校正,使其相对于消失的时间步骤进行稳健。我们提出了两种算法:第一种算法是基于模型的,因为它需要了解动力学的漂移函数。第二个是无模型的。我们证明了基于模型的算法在两个不同的方案中的线性参数化假设下与连续时间解的收敛性:一个具有问题的凸正则化;第二次使用具有恒定步长且无正则化的Polyak-juditsy平均方法。在后一种方案中获得的收敛速率与最简单的使用随机梯度下降方法的线性回归问题相媲美。从完全不同的角度来看,我们的方法可以应用于使用机器学习以非发散形式求解二阶椭圆方程。
translated by 谷歌翻译
Despite its popularity in the reinforcement learning community, a provably convergent policy gradient method for continuous space-time control problems with nonlinear state dynamics has been elusive. This paper proposes proximal gradient algorithms for feedback controls of finite-time horizon stochastic control problems. The state dynamics are nonlinear diffusions with control-affine drift, and the cost functions are nonconvex in the state and nonsmooth in the control. The system noise can degenerate, which allows for deterministic control problems as special cases. We prove under suitable conditions that the algorithm converges linearly to a stationary point of the control problem, and is stable with respect to policy updates by approximate gradient steps. The convergence result justifies the recent reinforcement learning heuristics that adding entropy regularization or a fictitious discount factor to the optimization objective accelerates the convergence of policy gradient methods. The proof exploits careful regularity estimates of backward stochastic differential equations.
translated by 谷歌翻译
我们研究有限的时间范围连续时间线性季节增强学习问题,在情节环境中,控制器的状态和控制系数都不清楚。我们首先提出了基于连续时间观察和控件的最小二乘算法,并建立对数的对数遗憾,以$ o((\ ln m)(\ ln \ ln m))$,$ m $是数字学习情节。该分析由两个部分组成:扰动分析,这些分析利用了相关的riccati微分方程的规律性和鲁棒性;和参数估计误差,依赖于连续的最小二乘估计器的亚指数属性。我们进一步提出了一种基于离散时间观察和分段恒定控制的实际实现最小二乘算法,该算法根据算法中使用的时间步骤明确地取决于额外的术语,从而实现相似的对数后悔。
translated by 谷歌翻译
我们开发了一个概率框架,用于分析基于模型的加强学习在整个概念环境中。然后,我们将其应用于使用线性动力学但未知的系数和凸起的有限时间地平线随机控制问题,但可能是不规则的,客观的函数。使用概率表示,我们研究相关成本函数的规律性,并建立精确估计,用于应用估计和真实模型参数的最佳反馈控制之间的性能差距。我们确定这种性能差距是二次,提高近期工作的线性性能差距的条件[X.郭,A. Hu和Y. Zhang,Arxiv预印,arxiv:2104.09311,(2021)],它与随机线性二次问题获得的结果相匹配。接下来,我们提出了一种基于阶段的学习算法,我们展示了如何优化探索剥削权衡,并在高概率和期望中实现索布林遗憾。当对二次性能间隙保持所需的假设时,该算法在一般情况下实现了订单$ \ mathcal {o}(\ sqrt {n \ ln n)$高概率后悔,以及订单$ \ mathcal {o} ((\ ln n)^ 2)$预期遗憾,在自我探索案例中,超过$ n $剧集,匹配文献中的最佳结果。分析需要新的浓度不等式,用于相关的连续时间观察,我们得出。
translated by 谷歌翻译
在本文中,我们提出了一种基于深度学习的数值方案,用于强烈耦合FBSDE,这是由随机控制引起的。这是对深度BSDE方法的修改,其中向后方程的初始值不是一个免费参数,并且新的损失函数是控制问题的成本的加权总和,而差异项与与该的差异相吻合终端条件下的平均误差。我们通过一个数值示例表明,经典深度BSDE方法的直接扩展为FBSDE,失败了简单的线性季度控制问题,并激励新方法为何工作。在定期和有限性的假设上,对时间连续和时间离散控制问题的确切控制,我们为我们的方法提供了错误分析。我们从经验上表明,该方法收敛于三个不同的问题,一个方法是直接扩展Deep BSDE方法的问题。
translated by 谷歌翻译
在非凸优化的背景下,研究Langevin扩散的温度控制问题。这种问题的经典最优控制是Bang-Bang类型,这对错误过于敏感。补救措施是允许扩散探索其他温度值,从而平滑爆炸控制。我们通过一种随机轻松的控制配方来实现这一点,该配方包括温度控制的随机性并规范其熵。我们得出了一个国家相关的截断的指数分布,其可用于在HJB偏微分方程的解决方案方面采样LangeVin算法中的温度。我们对一维基线示例进行数值实验,其中HJB方程可以很容易地解决,以比较算法与三个其他可用算法的性能,以搜索全局最优。
translated by 谷歌翻译
我们研究了随机近似程序,以便基于观察来自ergodic Markov链的长度$ n $的轨迹来求近求解$ d -dimension的线性固定点方程。我们首先表现出$ t _ {\ mathrm {mix}} \ tfrac {n}} \ tfrac {n}} \ tfrac {d}} \ tfrac {d} {n} $的非渐近性界限。$ t _ {\ mathrm {mix $是混合时间。然后,我们证明了一种在适当平均迭代序列上的非渐近实例依赖性,具有匹配局部渐近最小的限制的领先术语,包括对参数$的敏锐依赖(d,t _ {\ mathrm {mix}}) $以高阶术语。我们将这些上限与非渐近Minimax的下限补充,该下限是建立平均SA估计器的实例 - 最优性。我们通过Markov噪声的政策评估导出了这些结果的推导 - 覆盖了所有$ \ lambda \中的TD($ \ lambda $)算法,以便[0,1)$ - 和线性自回归模型。我们的实例依赖性表征为HyperParameter调整的细粒度模型选择程序的设计开放了门(例如,在运行TD($ \ Lambda $)算法时选择$ \ lambda $的值)。
translated by 谷歌翻译
了解随机梯度下降(SGD)的隐式偏见是深度学习的关键挑战之一,尤其是对于过度透明的模型,损失功能的局部最小化$ l $可以形成多种多样的模型。从直觉上讲,SGD $ \ eta $的学习率很小,SGD跟踪梯度下降(GD),直到它接近这种歧管为止,梯度噪声阻止了进一步的收敛。在这样的政权中,Blanc等人。 (2020)证明,带有标签噪声的SGD局部降低了常规术语,损失的清晰度,$ \ mathrm {tr} [\ nabla^2 l] $。当前的论文通过调整Katzenberger(1991)的想法提供了一个总体框架。它原则上允许使用随机微分方程(SDE)描述参数的限制动力学的SGD围绕此歧管的正规化效应(即“隐式偏见”)的正则化效应,这是由损失共同确定的功能和噪声协方差。这产生了一些新的结果:(1)与Blanc等人的局部分析相比,对$ \ eta^{ - 2} $ steps有效的隐性偏差进行了全局分析。 (2020)仅适用于$ \ eta^{ - 1.6} $ steps和(2)允许任意噪声协方差。作为一个应用程序,我们以任意大的初始化显示,标签噪声SGD始终可以逃脱内核制度,并且仅需要$ o(\ kappa \ ln d)$样本用于学习$ \ kappa $ -sparse $ -sparse yroverparame parametrized linearized Linear Modal in $ \ Mathbb {r}^d $(Woodworth等,2020),而GD在内核制度中初始化的GD需要$ \ omega(d)$样本。该上限是最小值的最佳,并改善了先前的$ \ tilde {o}(\ kappa^2)$上限(Haochen等,2020)。
translated by 谷歌翻译
本文分析了双模的彼此优化随机算法框架。 Bilevel优化是一类表现出两级结构的问题,其目标是使具有变量的外目标函数最小化,该变量被限制为对(内部)优化问题的最佳解决方案。我们考虑内部问题的情况是不受约束的并且强烈凸起的情况,而外部问题受到约束并具有平滑的目标函数。我们提出了一种用于解决如此偏纤维问题的两次时间尺度随机近似(TTSA)算法。在算法中,使用较大步长的随机梯度更新用于内部问题,而具有较小步长的投影随机梯度更新用于外部问题。我们在各种设置下分析了TTSA算法的收敛速率:当外部问题强烈凸起(RESP。〜弱凸)时,TTSA算法查找$ \ MATHCAL {O}(k ^ { - 2/3})$ -Optimal(resp。〜$ \ mathcal {o}(k ^ {-2/5})$ - 静止)解决方案,其中$ k $是总迭代号。作为一个应用程序,我们表明,两个时间尺度的自然演员 - 批评批评近端策略优化算法可以被视为我们的TTSA框架的特殊情况。重要的是,与全球最优政策相比,自然演员批评算法显示以预期折扣奖励的差距,以$ \ mathcal {o}(k ^ { - 1/4})的速率收敛。
translated by 谷歌翻译
变性推理(VI)为基于传统的采样方法提供了一种吸引人的替代方法,用于实施贝叶斯推断,因为其概念性的简单性,统计准确性和计算可扩展性。然而,常见的变分近似方案(例如平均场(MF)近似)需要某些共轭结构以促进有效的计算,这可能会增加不必要的限制对可行的先验分布家族,并对变异近似族对差异进行进一步的限制。在这项工作中,我们开发了一个通用计算框架,用于实施MF-VI VIA WASSERSTEIN梯度流(WGF),这是概率度量空间上的梯度流。当专门针对贝叶斯潜在变量模型时,我们将分析基于时间消化的WGF交替最小化方案的算法收敛,用于实现MF近似。特别是,所提出的算法类似于EM算法的分布版本,包括更新潜在变量变异分布的E step以及在参数的变异分布上进行最陡峭下降的m step。我们的理论分析依赖于概率度量空间中的最佳运输理论和细分微积分。我们证明了时间限制的WGF的指数收敛性,以最大程度地减少普通大地测量学严格的凸度的通用物镜功能。我们还提供了通过使用时间限制的WGF的固定点方程从MF近似获得的变异分布的指数收缩的新证明。我们将方法和理论应用于两个经典的贝叶斯潜在变量模型,即高斯混合模型和回归模型的混合物。还进行了数值实验,以补充这两个模型下的理论发现。
translated by 谷歌翻译
我们在$ \ Gamma $ -diScounted MDP中使用Polyak-Ruppert平均(A.K.A.,平均Q-Leaning)进行同步Q学习。我们为平均迭代$ \ bar {\ boldsymbol {q}}建立渐近常态。此外,我们展示$ \ bar {\ boldsymbol {q}} _ t $实际上是一个常规的渐近线性(RAL)估计值,用于最佳q-value函数$ \ boldsymbol {q} ^ * $与最有效的影响功能。它意味着平均Q学习迭代在所有RAL估算器之间具有最小的渐近方差。此外,我们为$ \ ell _ {\ infty} $错误$ \ mathbb {e} \ | \ | \ bar {\ boldsymbol {q}} _ t- \ boldsymbol {q} ^ *} ^ *} _ {\ idty} $,显示它与实例相关的下限以及最佳最低限度复杂性下限。作为一个副产品,我们发现Bellman噪音具有var-gaussian坐标,具有方差$ \ mathcal {o}((1- \ gamma)^ {-1})$而不是现行$ \ mathcal {o}((1- \ Gamma)^ { - 2})$根据标准界限奖励假设。子高斯结果有可能提高许多R1算法的样本复杂性。简而言之,我们的理论分析显示平均Q倾斜在统计上有效。
translated by 谷歌翻译
显示了最佳的收敛速率,显示了对保守随机偏微分方程的平均场限制对解决方案解决方案解决方案解决方案的收敛。作为第二个主要结果,该SPDE的定量中心极限定理再次得出,并以最佳的收敛速率得出。该结果尤其适用于在过叠层化的,浅的神经网络中与SPDES溶液中随机梯度下降动力学的平均场缩放率的收敛性。结果表明,在限制SPDE中包含波动可以提高收敛速度,并保留有关随机梯度下降的波动的信息。
translated by 谷歌翻译
连续数据的优化问题出现在,例如强大的机器学习,功能数据分析和变分推理。这里,目标函数被给出为一个(连续)索引目标函数的系列 - 相对于概率测量集成的族聚集。这些问题通常可以通过随机优化方法解决:在随机切换指标执行关于索引目标函数的优化步骤。在这项工作中,我们研究了随机梯度下降算法的连续时间变量,以进行连续数据的优化问题。该所谓的随机梯度过程包括最小化耦合与确定索引的连续时间索引过程的索引目标函数的梯度流程。索引过程是例如,反射扩散,纯跳跃过程或紧凑空间上的其他L evy过程。因此,我们研究了用于连续数据空间的多种采样模式,并允许在算法的运行时进行模拟或流式流的数据。我们分析了随机梯度过程的近似性质,并在恒定下进行了长时间行为和遍历的学习率。我们以噪声功能数据的多项式回归问题以及物理知识的神经网络在多项式回归问题中结束了随机梯度过程的适用性。
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
在负面的感知问题中,我们给出了$ n $数据点$({\ boldsymbol x} _i,y_i)$,其中$ {\ boldsymbol x} _i $是$ d $ -densional vector和$ y_i \ in \ { + 1,-1 \} $是二进制标签。数据不是线性可分离的,因此我们满足自己的内容,以找到最大的线性分类器,具有最大的\ emph {否定}余量。换句话说,我们想找到一个单位常规矢量$ {\ boldsymbol \ theta} $,最大化$ \ min_ {i \ le n} y_i \ langle {\ boldsymbol \ theta},{\ boldsymbol x} _i \ rangle $ 。这是一个非凸优化问题(它相当于在Polytope中找到最大标准矢量),我们在两个随机模型下研究其典型属性。我们考虑比例渐近,其中$ n,d \ to \ idty $以$ n / d \ to \ delta $,并在最大边缘$ \ kappa _ {\ text {s}}(\ delta)上证明了上限和下限)$或 - 等效 - 在其逆函数$ \ delta _ {\ text {s}}(\ kappa)$。换句话说,$ \ delta _ {\ text {s}}(\ kappa)$是overparametization阈值:以$ n / d \ le \ delta _ {\ text {s}}(\ kappa) - \ varepsilon $一个分类器实现了消失的训练错误,具有高概率,而以$ n / d \ ge \ delta _ {\ text {s}}(\ kappa)+ \ varepsilon $。我们在$ \ delta _ {\ text {s}}(\ kappa)$匹配,以$ \ kappa \ to - \ idty $匹配。然后,我们分析了线性编程算法来查找解决方案,并表征相应的阈值$ \ delta _ {\ text {lin}}(\ kappa)$。我们观察插值阈值$ \ delta _ {\ text {s}}(\ kappa)$和线性编程阈值$ \ delta _ {\ text {lin {lin}}(\ kappa)$之间的差距,提出了行为的问题其他算法。
translated by 谷歌翻译
本文涉及由马尔可夫噪声驱动的随机近似的收敛和渐近统计:$$ \ theta_ {n + 1} = \ theta_n + \ alpha_ {n + 1} f(\ theta_n,\ phi_ {n + 1})\, ,\ quad n \ ge 0,$$,其中每个$ \ theta_n \ in \ re ^ d $,$ \ {\ phi_n \} $是一般状态空间x上的马尔可夫链,静止分配$ \ pi $和$ f:\ re ^ d \ times \ text {x} \ to \ re ^ d $。除了在$ f $的标准lipschitz边界,以及消失的步骤大小序列$ \ {\ alpha_n \ \} $的条件外,假设相关ode是全局渐近稳定的静止点表示$ \ theta ^ * $ ,其中$ \ bar f(\ theta)= e [f(\ theta,\ phi)] $ with $ \ phi \ sim \ pi $。而且,ode @ $ \ infty $ virect with advoore字段,$$ \ bar f_ \ idty(\ theta):= \ lim_ {r \ to \ infty} r ^ { - 1} \ bar f(r \ theta)\ ,, \ qquad \ theta \ in \ re ^ d,$$是渐近稳定的。主要贡献总结如下:(i)如果$ \ phi $是几何ergodic,则序列$ \ theta $是融合的,并且在$ f $兼容兼容的界限。剩余的结果是在马尔可夫链的更强大假设下建立:Donsker-varadhan Lyapunov漂移条件的稍微弱版本(DV3)。 (ii)为联合过程$ \ {\ theta_n,\ phi_n \} $构建Lyapunov函数,这意味着$ \ {\ theta_n \} $ in $ l_4 $的融合。 (iii)建立了功能性CLT,以及归一化误差$ z_n:=(\ theta_n- \ theta ^ *)/ \ sqrt {\ alpha_n} $的常规一维CLT。时刻界限结合了CLT暗示了归一化协方差的收敛,$$ \ lim_ {n \ to \ infty} e [z_n z_n ^ t] = \ sigma_ \ theta,$$在$ \ sigma_ \ theta $ where asbptotic协方差出现在CLT中。 (iv)提供了一个例子,其中马尔可夫链$ \ phi $是几何ergodic,但它不满足(dv3)。虽然算法收敛,但第二个时刻是无限的。
translated by 谷歌翻译
在当前文献中,随机梯度下降(SGD)的扩散近似仅在有限的时间间隔内有效。在本文中,我们仅假设预期损失是强烈的凸和其他轻度条件,建立了SGD的均匀扩散近似值,而无需假设每个随机损耗函数的凸度。主要技术是建立向后kolmogorov方程的溶液衍生物的指数衰减速率。均匀的近似近似使我们能够通过连续的随机微分方程(SDE)研究SGD的渐近行为,即使随机目标函数$ f(\ cdot; \ xi)$不是强烈的凸。
translated by 谷歌翻译
我们研究了无限 - 马,连续状态和行动空间的政策梯度的全球融合以及熵登记的马尔可夫决策过程(MDPS)。我们考虑了在平均场状态下具有(单隐层)神经网络近似(一层)神经网络近似的策略。添加了相关的平均场概率度量中的其他熵正则化,并在2-Wasserstein度量中研究了相应的梯度流。我们表明,目标函数正在沿梯度流量增加。此外,我们证明,如果按平均场测量的正则化足够,则梯度流将成倍收敛到唯一的固定溶液,这是正则化MDP物镜的独特最大化器。最后,我们研究了相对于正则参数和初始条件,沿梯度流的值函数的灵敏度。我们的结果依赖于对非线性Fokker-Planck-Kolmogorov方程的仔细分析,并扩展了Mei等人的开拓性工作。 2020和Agarwal等。 2020年,量化表格环境中熵调控MDP的策略梯度的全局收敛速率。
translated by 谷歌翻译
Q学习长期以来一直是最受欢迎的强化学习算法之一,几十年来,Q学习的理论分析一直是一个活跃的研究主题。尽管对Q-学习的渐近收敛分析的研究具有悠久的传统,但非肿瘤收敛性直到最近才受到积极研究。本文的主要目的是通过控制系统的观点研究马尔可夫观察模型下异步Q学习的新有限时间分析。特别是,我们引入了Q学习的离散时间变化的开关系统模型,并减少了分析的步骤尺寸,这显着改善了使用恒定步骤尺寸的开关系统分析的最新开发,并导致\(\(\)(\) Mathcal {o} \ left(\ sqrt {\ frac {\ log k} {k}}} \ right)\)\)\)\)\)\)\)\)与大多数艺术状态相当或更好。同时,新应用了使用类似转换的技术,以避免通过减小的步骤尺寸提出的分析中的难度。提出的分析带来了其他见解,涵盖了不同的方案,并提供了新的简化模板,以通过其独特的连接与离散时间切换系统的独特联系来加深我们对Q学习的理解。
translated by 谷歌翻译
随机近似(SA)和随机梯度下降(SGD)算法是现代机器学习算法的工作马。由于快速收敛行为,它们在实践中优选它们的持续步骤变体。然而,恒定的步骤随机迭代算法不与最佳解决方案渐近地收敛,而是具有静止分布,这通常不能被分析表征。在这项工作中,我们研究了适当缩放的静止分布的渐近行为,在恒定步骤零的限制中。具体而言,我们考虑以下三种设置:(1)SGD算法,具有平滑且强的凸面物镜,(2)涉及Hurwitz矩阵的线性SA算法,和(3)涉及收缩算子的非线性SA算法。当迭代以$ 1 / \ sqrt {\ alpha} $缩放时,其中$ \ alpha $是常量的步骤,我们表明限制缩放静止分布是整体方程的解决方案。在该等式上的唯一性假设(可以在某些设置中除去),我们进一步表征了作为高斯分布的限制分布,其协方差矩阵是合适的Lyapunov方程的独特解决方案。对于超出这些情况的SA算法,我们的数值实验表明,与中央极限定理类型结果不同:(1)缩放因子不需要为$ 1 / \ sqrt {\ alpha} $,并且(2)限制分布不需要高斯。基于数值研究,我们提出了一种确定右缩放因子的公式,并与近似随机微分方程的欧拉 - 玛赖山离散化方案进行富有洞察力的连接。
translated by 谷歌翻译