多语言语音识别已引起大幅关注,作为补偿低资源语言数据稀缺性的有效方法。端到端(E2E)建模比常规混合系统优选,这主要是由于没有词典要求。但是,在有限的数据方案中,混合DNN-HMM仍然优于E2E模型。此外,手动词典创建的问题已通过公开训练的素式训练型(G2P)(G2P)和多种语言的IPA音译来缓解。在本文中,在低资源语言的多语言设置中提出了一种混合DNN-HMM声学模型的新型方法。针对目标语言语言信号的不同单语言模型的后验分布融合在一起。为每个源目标语言对训练了一个单独的回归神经网络,以将后者从源声学模型转换为目标语言。与ASR培训相比,这些网络需要非常有限的数据。与多语言和单语基线相比,后融合的相对增益分别为14.65%和6.5%。跨语性模型融合表明,无需使用依赖语言的ASR的后代,就可以实现可比的结果。
translated by 谷歌翻译
多语言自动语音识别(ASR)系统大多受益于低资源语言,但相对于单语言对应物,多种语言的性能下降。有限的研究集中在理解多语言语音识别设置中的语言行为。在本文中,提出了一种新型的数据驱动方法来研究跨语性的声学表达相似性。该技术衡量了各种单语言模型与目标语音信号的后验分布之间的相似性。深度神经网络被训练为映射网络,以将分布从不同的声学模型转换为直接比较的形式。分析观察到,语言接近性无法通过集合音素的体积真正估计。对拟议的映射网络的熵分析表明,具有较小重叠的语言可以更适合跨语性转移,因此在多语言设置中更有益。最后,提出的后验变换方法被利用为目标语言的单语模型融合。比单语言对应物的相对提高约为8%。
translated by 谷歌翻译
语音处理系统目前不支持绝大多数语言,部分原因是低资源语言中的数据缺乏。交叉语言传输提供了一种引人注目的方法来帮助通过将高资源数据纳入低资源系统来帮助桥接这种数字鸿沟。目前的交叉算法在一些基于文本的任务和与一些低资源语言中的语音相关任务中表现出了成功。但是,缩放语音系统以支持数百个低资源语言仍未解决。为了帮助桥接这种差距,我们提出了一种语言相似性方法,可以有效地识别数百种语言的声学交叉传输对。我们展示了我们在语言家庭分类,语音识别和语音综合任务中的方法的有效性。
translated by 谷歌翻译
我们介绍了一种用于跨语言训练ASR系统的方法,使用目标语言绝对没有转录的训练数据,并且没有相关语言的语音知识。我们的方法使用了一种解密算法的新应用,该算法仅在目标语言中仅操作不配对的语音和文本数据。我们将此破译应用于由通用电话识别器产生的电话序列,由语言语音语料库培训,我们遵循平稳半监督培训,以获得新语言的声学模型。据我们所知,这是零资源交叉语言ASR的第一种实用方法,不依赖于任何手工制作的语音信息。我们对来自Globalphone语料库的读语音进行了实验,并表明可以在目标语言中仅在20分钟的数据上学习解密模型。当用于生成半监督培训的伪标签时,我们获得了比在同一数据上培训的等同完全监督模型的25%至仅5%的绝对差。
translated by 谷歌翻译
交叉语言语音适应旨在解决利用多种丰富资源语言来构建低资源目标语言的模型的问题。由于低资源语言具有有限的培训数据,语音识别模型可以容易地过度装备。在本文中,我们建议使用适配器来研究多种适配器的性能,用于参数有效的交叉语音语音适应。基于我们以前的MetaAdapter,隐含地利用适配器,我们提出了一种名为SimAdapter的新算法,用于从Adapters明确学习知识。我们的算法利用了可以轻松集成到变压器结构中的适配器.METAADAPTER利用元学习将一般知识从训练数据转移到测试语言。 SimAdapter旨在使用适配器微调期间了解源语言与目标语言之间的相似性。我们在公共语音数据集中对五种低资源语言进行广泛的实验。结果表明,与强大的全型微调基线相比,我们的MetaAdapter和SimAdapter方法可以将WER减小2.98%和2.55%,只有2.5%和15.5%的培训参数。此外,我们还表明这两种新型算法可以集成,以便更好的性能,相对减少高达3.55%。
translated by 谷歌翻译
由于(1)低资源语言的数据稀缺,(2)培训和清爽100+单语言模型的昂贵计算成本,培训和部署混合语音识别的变压器LMS以低资源语言重新排行第二通道是具有挑战性的。,以及(3)考虑流量稀疏的效率低下。在这项研究中,我们提出了一种新的方法,将多个低资源的区域分组在一起,并优化ASR中多语言变压器LMS的性能。我们的本地组多语言变压器LMS的表现优于传统的多语言LM,以及降低维护成本和运营费用。此外,对于部署单语模型的低资源但人口流量的地区是可行的,我们表明,对我们的语言环境组的多语言LMS进行微调可产生比基线单语LMS更好的单语LM候选者。
translated by 谷歌翻译
我们介绍了一个CLSRIL-23,一个自我监督的基于学习的音频预训练模型,它学习了来自23个指示语言的原始音频的交叉语言语音表示。它基于Wav2Vec 2.0之上,通过培训蒙面潜在语音表示的对比任务来解决,并共同了解所有语言共享的潜伏的量化。我们在预磨练期间比较语言明智的损失,以比较单机和多语言预制的影响。还比较了一些下游微调任务的表现,并且我们的实验表明,在学习语音表示方面,我们的实验表明,在学习语言的语音表示方面,以及在沿着流的性能方面的学习语音表示。在Hindi中使用多语言预磨模模型时,在WER中观察到5%的减少,9.5%。所有代码模型也都是开放的。 CLSRIL-23是一款以23美元的价格培训的型号,以及近10,000小时的音频数据培训,以促进在语言中的语音识别研究。我们希望将使用自我监督方法创建新的最新状态,特别是对于低资源指示语言。
translated by 谷歌翻译
关节特征本质上是声信号失真的不变,并且已成功地纳入了为正常语音设计的自动语音识别(ASR)系统。它们在非典型任务领域(例如老年人和跨语言的言语无序)的实际应用通常受到从目标扬声器收集此类专家数据的困难。本文介绍了一种跨域和跨语性A2A反演方法,该方法利用了A2A模型中24小时TAL Corpus的平行音频,视觉和超声舌成像(UTI)数据,然后进行交叉训练和交叉训练。语言适用于两种语言的三个数据集:英语dementiabank pitt和antonese JCCOCC MOCA老年演讲Corpora;以及英语Torgo违反语音数据,以产生基于UTI的发音特征。 Experiments conducted on three tasks suggested incorporating the generated articulatory features consistently outperformed the baseline hybrid TDNN and Conformer based end-to-end systems constructed using acoustic features only by statistically significant word error rate or character error rate reductions up to 2.64%, 1.92% and数据增强和说话者适应后,绝对4.17%,7.89%和13.28%相对1.21%。
translated by 谷歌翻译
非洲语言仍然滞留在自然语言处理技术的进步中,是缺乏代表性数据的一个原因,具有可以在语言之间传输信息的技术可以帮助减少缺乏数据问题。本文列车Setswana和Sepedi单语法向量,并使用Vecmap为Setsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssswana-sepedi创建交叉语言嵌入式。 Word Embeddings是字向量,其代表单词作为连续浮动数字,其中语义类似的单词映射到N维空间中的附近点。 Word Embeddings的想法是基于分布假设,即在类似上下文中分发了语义类似的单词(Harris,1954)。通过学习两个单独训练的单丝矢量的共享矢量空间来利用单晶嵌入来利用单晶的嵌入,使得具有类似含义的单词由类似的载体表示。在本文中,我们调查Setswana-Sepedi单声道单词矢量的十字旋转嵌入。我们使用Vecmap中的无监督十字形嵌入式培训Setswana-Sepedi跨语言嵌入式。我们使用语义评估任务评估Setswana-Sepedi交叉词表示的质量。对于语义相似性任务,我们将单词和Simlex任务翻译成SetSwana和Sepedi。我们将此数据集发布为其他研究人员的这项工作的一部分。我们评估嵌入式的内在质量,以确定是否有改进单词嵌入的语义表示。
translated by 谷歌翻译
本文介绍了基于Wav2VEC 2.0的跨语言语音表示学习的大规模模型。我们在128种语言中培训最多2B个公共讲话音频的近半小时的型号的模型,比公共数据的数量级比最大的已知事先工作。我们的评估涵盖了广泛的任务,域,数据制度和语言,都是高低资源。在Covost-2语音翻译基准测试中,我们将先前的最先进的状态平均为7.4 BLEU超过21个翻译方向进入英语。对于语音识别,XLS-R在Babel,MLS,CommonVoice以及Voxpopuli上的最佳已知工作中提高,降低了相对的误差率14-34%。 XLS-R还在Voxlingua107语言识别上设置了新的技术状态。此外,我们表明,具有足够的模型规模,交叉思维预先预测可以在将英语演讲翻译成其他语言时才能优于英语撇印,这是一个有利于单晶的预借预制的设置。我们希望XLS-R可以帮助改善世界上更多语言的语音处理任务。
translated by 谷歌翻译
最近最近提出了使用音韵特征而不是音素作为输入到序列TTS的输入,用于零拍摄的多语言语音合成。这种方法对于代码切换是有用的,因为它促进了嵌入在本机的流中的外语的无缝发出。在我们的工作中,我们培训了一种语言 - 无人物多相箱模型,在不同语言中常见的一组音牙衍生特征上,其目标是实现交叉语言扬声器适应。我们首先尝试语言语音相似性对几种源语言组合的交叉语言的影响。随后,我们可以在看见或一个看不见的语言中使用非常有限的新扬声器语音数据进行微调,并实现了相同质量的合成语音,同时保留了目标扬声器的身份。随着目标扬声器数据的32和8个话语,我们获得高扬声器相似性分数和与相应文献相当的自然。在仅为2种可用的适应话语的极端情况下,我们发现我们的模型表现为几滴学习者,因为在所见和看不见的语言方案中的性能相似。
translated by 谷歌翻译
会话双语语言包括三种类型的话语:两个纯粹单色类型和一个内侧型代码切换类型。在这项工作中,我们提出了一个综合框架,共同模拟包括双语语音识别的单声道和代码交换机子任务的可能性。通过定义具有标签到帧同步的单个子任务,我们的联合建模框架可以条件地分解,使得可以仅获得或可能不切换的最终双语输出,仅给出单格式信息。我们表明,该条件分解的联合框架可以由端到端可分解的神经网络进行建模。我们展示了我们拟议模型在单语和代码切换的语料中对双语普通话语音识别的效果。
translated by 谷歌翻译
本文介绍了Thuee团队的语音识别系统,用于IARPA Open自动语音识别挑战(OpenASR21),并进行了进一步的实验探索。我们在受限和受约束的训练条件下取得了出色的成果。对于受限的训练条件,我们基于标准混合体系结构构建基本ASR系统。为了减轻摄影库(OOV)的问题,我们使用针对OOV和潜在的新单词的素式至phoneme(G2P)技术扩展了发音词典。采用了标准的声学模型结构,例如CNN-TDNN-F和CNN-TDNN-F-A。此外,还应用了多种数据增强技术。对于约束训练条件,我们使用自我监督的学习框架WAV2VEC2.0。我们在公开可用的预训练XLSR-53的基础上使用连接式时间分类(CTC)标准进行各种微调技术。我们发现,在将WAV2VEC2.0预训练的模型应用于基于编码器的CTC/CTC/COATION ASR体系结构时,前端特征提取器在将WAV2VEC2.0预训练的模型应用时起着重要作用。通过将目标语言用作为前端功能提取器使用的CTC模型填充可以实现额外的改进。
translated by 谷歌翻译
In speech recognition, it is essential to model the phonetic content of the input signal while discarding irrelevant factors such as speaker variations and noise, which is challenging in low-resource settings. Self-supervised pre-training has been proposed as a way to improve both supervised and unsupervised speech recognition, including frame-level feature representations and Acoustic Word Embeddings (AWE) for variable-length segments. However, self-supervised models alone cannot learn perfect separation of the linguistic content as they are trained to optimize indirect objectives. In this work, we experiment with different pre-trained self-supervised features as input to AWE models and show that they work best within a supervised framework. Models trained on English can be transferred to other languages with no adaptation and outperform self-supervised models trained solely on the target languages.
translated by 谷歌翻译
In this work, we seek to build effective code-switched (CS) automatic speech recognition systems (ASR) under the zero-shot setting where no transcribed CS speech data is available for training. Previously proposed frameworks which conditionally factorize the bilingual task into its constituent monolingual parts are a promising starting point for leveraging monolingual data efficiently. However, these methods require the monolingual modules to perform language segmentation. That is, each monolingual module has to simultaneously detect CS points and transcribe speech segments of one language while ignoring those of other languages -- not a trivial task. We propose to simplify each monolingual module by allowing them to transcribe all speech segments indiscriminately with a monolingual script (i.e. transliteration). This simple modification passes the responsibility of CS point detection to subsequent bilingual modules which determine the final output by considering multiple monolingual transliterations along with external language model information. We apply this transliteration-based approach in an end-to-end differentiable neural network and demonstrate its efficacy for zero-shot CS ASR on Mandarin-English SEAME test sets.
translated by 谷歌翻译
设备的端到端(E2E)模型已显示出对质量和延迟的英语语音搜索任务的常规模型的改进。 E2E模型还显示了多语言自动语音识别(ASR)的有希望的结果。在本文中,我们将以前的容量解决方案扩展到流应用程序,并提出流媒体多语言E2E ASR系统,该系统在设备上完全运行,质量和延迟与单个单语言模型相当。为了实现这一目标,我们提出了一个编码器端量模型和一个终端(EOU)联合层,以提高质量和延迟权衡。我们的系统以语言不可知论的方式构建,允许它实时支持本条件的代码切换。为了解决大型模型的可行性问题,我们进行了设备分析,并用最近开发的嵌入解码器代替了耗时的LSTM解码器。通过这些更改,我们设法在不到实时的时间内在移动设备上运行了这样的系统。
translated by 谷歌翻译
培训多语言自动语音识别(ASR)系统具有挑战性,因为声学和词汇信息通常是特定于语言的。由于缺乏开源数据集和不同方法的结果,培训对Indo语言的多语言系统更加困难。我们将端到端多语言语音识别系统的性能与以语言识别(LID)为条件的单语模型的性能进行比较。来自多语言模型的解码信息用于语言识别,然后与单语模型结合使用,以改善跨语言的50%WER。我们还提出了一种类似的技术来解决代码切换问题,并在印度英语和孟加拉国英语中分别达到21.77和28.27。我们的工作谈到了如何将基于变压器的ASR尤其是WAV2VEC 2.0应用于开发用于指示语言的多语言ASR和代码转换ASR。
translated by 谷歌翻译
End-to-end multilingual ASR has become more appealing because of several reasons such as simplifying the training and deployment process and positive performance transfer from high-resource to low-resource languages. However, scaling up the number of languages, total hours, and number of unique tokens is not a trivial task. This paper explores large-scale multilingual ASR models on 70 languages. We inspect two architectures: (1) Shared embedding and output and (2) Multiple embedding and output model. In the shared model experiments, we show the importance of tokenization strategy across different languages. Later, we use our optimal tokenization strategy to train multiple embedding and output model to further improve our result. Our multilingual ASR achieves 13.9%-15.6% average WER relative improvement compared to monolingual models. We show that our multilingual ASR generalizes well on an unseen dataset and domain, achieving 9.5% and 7.5% WER on Multilingual Librispeech (MLS) with zero-shot and finetuning, respectively.
translated by 谷歌翻译
Automatic speech recognition (ASR) has been established as a well-performing technique for many scenarios where lots of labeled data is available. Additionally, unsupervised representation learning recently helped to tackle tasks with limited data. Following this, hardware limitations and applications give rise to the question how to efficiently take advantage of large pretrained models and reduce their complexity for downstream tasks. In this work, we study a challenging low resource conversational telephony speech corpus from the medical domain in Vietnamese and German. We show the benefits of using unsupervised techniques beyond simple fine-tuning of large pre-trained models, discuss how to adapt them to a practical telephony task including bandwidth transfer and investigate different data conditions for pre-training and fine-tuning. We outperform the project baselines by 22% relative using pretraining techniques. Further gains of 29% can be achieved by refinements of architecture and training and 6% by adding 0.8 h of in-domain adaptation data.
translated by 谷歌翻译
自我监督的培训表明预先训练模型的有希望的收益,并促进了对语音识别的下游尖端,如多语言ASR。大多数现有方法采用一个2阶段方案,其中自我监督损失在第一个预先预订阶段进行了优化,并在第二阶段的标准监督的FINETUNING恢复。在本文中,我们提出了一部结束(E2E)联合无监督和监督培训(Just)方法,以将监督的RNN-T损失和自我监督的对比和屏蔽语言建模(MLM)损失结合起来。我们在公共数据集多语言LibrisPeech(MLS)上验证其性能,其中包括8种语言,非常不平衡。在MLS上,我们探索(1)刚从划痕训练,(2)刚从佩戴检查站训练。实验表明,只需始终如一地胜过其他现有的最先进的方法,并通过显着的保证金击败单声道基线,展示了在多语言ASR中处理低资源语言的能力。我们的平均WER所有语言都优于平均单声道基线33.3%,最先进的2级XLSR达到32%。在低资源语言如波兰语,我们的WER不到一半的单机基线,甚至击败了使用外部监管的监督转移学习方法。
translated by 谷歌翻译